diff -r aed08cd6adae -r 5caa2710dd5b src/HOL/Hyperreal/Deriv.thy --- a/src/HOL/Hyperreal/Deriv.thy Sun Jun 17 13:39:50 2007 +0200 +++ b/src/HOL/Hyperreal/Deriv.thy Sun Jun 17 18:47:03 2007 +0200 @@ -236,8 +236,7 @@ show "\g. (\z. f z - f x = g z * (z-x)) \ isCont g x \ g x = l" proof (intro exI conjI) let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))" - show "\z. f z - f x = ?g z * (z-x)" - by (simp add: nonzero_mult_divide_cancel_right') + show "\z. f z - f x = ?g z * (z-x)" by simp show "isCont ?g x" using der by (simp add: isCont_iff DERIV_iff diff_minus cong: LIM_equal [rule_format]) @@ -248,8 +247,7 @@ then obtain g where "(\z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast thus "(DERIV f x :> l)" - by (auto simp add: isCont_iff DERIV_iff nonzero_mult_divide_cancel_right' - cong: LIM_cong) + by (auto simp add: isCont_iff DERIV_iff cong: LIM_cong) qed lemma DERIV_chain':