diff -r bfd5198cbe40 -r 5da32dc55cd8 src/HOL/Probability/Projective_Family.thy --- a/src/HOL/Probability/Projective_Family.thy Wed Nov 07 11:33:27 2012 +0100 +++ b/src/HOL/Probability/Projective_Family.thy Wed Nov 07 14:41:49 2012 +0100 @@ -25,14 +25,14 @@ fixes I::"'i set" and P::"'i set \ ('i \ 'a) measure" and M::"('i \ 'a measure)" assumes projective: "\J H X. J \ {} \ J \ H \ H \ I \ finite H \ X \ sets (PiM J M) \ (P H) (prod_emb H M J X) = (P J) X" + assumes prob_space: "\J. finite J \ prob_space (P J)" assumes proj_space: "\J. finite J \ space (P J) = space (PiM J M)" assumes proj_sets: "\J. finite J \ sets (P J) = sets (PiM J M)" assumes proj_finite_measure: "\J. finite J \ emeasure (P J) (space (PiM J M)) \ \" - assumes prob_space: "\i. prob_space (M i)" + assumes measure_space: "\i. prob_space (M i)" begin lemma emeasure_PiP: - assumes "J \ {}" assumes "finite J" assumes "J \ I" assumes A: "\i. i\J \ A i \ sets (M i)" @@ -49,30 +49,27 @@ emeasure (PiP J M P) (prod_emb J M J (Pi\<^isub>E J A))" using assms(1-3) sets_into_space by (auto simp add: prod_emb_id Pi_def) also have "\ = emeasure (P J) (Pi\<^isub>E J A)" - proof (rule emeasure_extend_measure[OF PiP_def, where i="(J, A)", simplified, - of J M "P J" P]) - show "positive (sets (PiM J M)) (P J)" unfolding positive_def by auto - show "countably_additive (sets (PiM J M)) (P J)" unfolding countably_additive_def + proof (rule emeasure_extend_measure_Pair[OF PiP_def]) + show "positive (sets (PiP J M P)) (P J)" unfolding positive_def by auto + show "countably_additive (sets (PiP J M P)) (P J)" unfolding countably_additive_def by (auto simp: suminf_emeasure proj_sets[OF `finite J`]) - show "(\(Ja, X). prod_emb J M Ja (Pi\<^isub>E Ja X)) ` {(Ja, X). (Ja = {} \ J = {}) \ - finite Ja \ Ja \ J \ X \ (\ j\Ja. sets (M j))} \ Pow (\ i\J. space (M i)) \ - (\(Ja, X). prod_emb J M Ja (Pi\<^isub>E Ja X)) ` - {(Ja, X). (Ja = {} \ J = {}) \ finite Ja \ Ja \ J \ X \ (\ j\Ja. sets (M j))} \ - Pow (extensional J)" by (auto simp: prod_emb_def) - show "(J = {} \ J = {}) \ finite J \ J \ J \ A \ (\ j\J. sets (M j))" + show "(J \ {} \ J = {}) \ finite J \ J \ J \ A \ (\ j\J. sets (M j))" using assms by auto - fix i - assume - "case i of (Ja, X) \ (Ja = {} \ J = {}) \ finite Ja \ Ja \ J \ X \ (\ j\Ja. sets (M j))" - thus "emeasure (P J) (case i of (Ja, X) \ prod_emb J M Ja (Pi\<^isub>E Ja X)) = - (case i of (J, X) \ emeasure (P J) (Pi\<^isub>E J X))" using assms - by (cases i) (auto simp add: intro!: projective sets_PiM_I_finite) + fix K and X::"'i \ 'a set" + show "prod_emb J M K (Pi\<^isub>E K X) \ Pow (\\<^isub>E i\J. space (M i))" + by (auto simp: prod_emb_def) + assume JX: "(K \ {} \ J = {}) \ finite K \ K \ J \ X \ (\ j\K. sets (M j))" + thus "emeasure (P J) (prod_emb J M K (Pi\<^isub>E K X)) = emeasure (P K) (Pi\<^isub>E K X)" + using assms + apply (cases "J = {}") + apply (simp add: prod_emb_id) + apply (fastforce simp add: intro!: projective sets_PiM_I_finite) + done qed finally show ?thesis . qed lemma PiP_finite: - assumes "J \ {}" assumes "finite J" assumes "J \ I" shows "PiP J M P = P J" (is "?P = _") @@ -108,6 +105,6 @@ end sublocale projective_family \ M: prob_space "M i" for i - by (rule prob_space) + by (rule measure_space) end