diff -r a5d3f3c07de8 -r 5de3772609ea src/HOL/ex/Parallel_Example.thy --- a/src/HOL/ex/Parallel_Example.thy Mon Jan 23 22:33:25 2023 +0100 +++ b/src/HOL/ex/Parallel_Example.thy Tue Jan 24 10:30:56 2023 +0000 @@ -61,7 +61,7 @@ function factorise_from :: "nat \ nat \ nat list" where "factorise_from k n = (if 1 < k \ k \ n then - let (q, r) = Euclidean_Division.divmod_nat n k + let (q, r) = Euclidean_Rings.divmod_nat n k in if r = 0 then k # factorise_from k q else factorise_from (Suc k) n else [])" @@ -69,7 +69,7 @@ termination factorise_from \ \tuning of this proof is left as an exercise to the reader\ apply (relation "measure (\(k, n). 2 * n - k)") - apply (auto simp add: Euclidean_Division.divmod_nat_def algebra_simps elim!: dvdE) + apply (auto simp add: Euclidean_Rings.divmod_nat_def algebra_simps elim!: dvdE) subgoal for m n apply (cases "m \ n * 2") apply (auto intro: diff_less_mono)