diff -r 0c86acc069ad -r 5deda0549f97 doc-src/TutorialI/ToyList/document/ToyList.tex --- a/doc-src/TutorialI/ToyList/document/ToyList.tex Thu Jul 26 16:54:44 2012 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,530 +0,0 @@ -% -\begin{isabellebody}% -\def\isabellecontext{ToyList}% -% -\isadelimtheory -% -\endisadelimtheory -% -\isatagtheory -\isacommand{theory}\isamarkupfalse% -\ ToyList\isanewline -\isakeyword{imports}\ Datatype\isanewline -\isakeyword{begin}% -\endisatagtheory -{\isafoldtheory}% -% -\isadelimtheory -% -\endisadelimtheory -% -\begin{isamarkuptext}% -\noindent -HOL already has a predefined theory of lists called \isa{List} --- -\isa{ToyList} is merely a small fragment of it chosen as an example. In -contrast to what is recommended in \S\ref{sec:Basic:Theories}, -\isa{ToyList} is not based on \isa{Main} but on \isa{Datatype}, a -theory that contains pretty much everything but lists, thus avoiding -ambiguities caused by defining lists twice.% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{datatype}\isamarkupfalse% -\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{3D}{\isacharequal}}\ Nil\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{29}{\isacharparenright}}\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ Cons\ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}a\ list{\isaliteral{22}{\isachardoublequoteclose}}\ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{28}{\isacharparenleft}}\isakeyword{infixr}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{23}{\isacharhash}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isadigit{6}}{\isadigit{5}}{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptext}% -\noindent -The datatype\index{datatype@\isacommand {datatype} (command)} -\tydx{list} introduces two -constructors \cdx{Nil} and \cdx{Cons}, the -empty~list and the operator that adds an element to the front of a list. For -example, the term \isa{Cons True (Cons False Nil)} is a value of -type \isa{bool\ list}, namely the list with the elements \isa{True} and -\isa{False}. Because this notation quickly becomes unwieldy, the -datatype declaration is annotated with an alternative syntax: instead of -\isa{Nil} and \isa{Cons x xs} we can write -\isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}\index{$HOL2list@\isa{[]}|bold} and -\isa{x\ {\isaliteral{23}{\isacharhash}}\ xs}\index{$HOL2list@\isa{\#}|bold}. In fact, this -alternative syntax is the familiar one. Thus the list \isa{Cons True -(Cons False Nil)} becomes \isa{True\ {\isaliteral{23}{\isacharhash}}\ False\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}. The annotation -\isacommand{infixr}\index{infixr@\isacommand{infixr} (annotation)} -means that \isa{{\isaliteral{23}{\isacharhash}}} associates to -the right: the term \isa{x\ {\isaliteral{23}{\isacharhash}}\ y\ {\isaliteral{23}{\isacharhash}}\ z} is read as \isa{x\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{28}{\isacharparenleft}}y\ {\isaliteral{23}{\isacharhash}}\ z{\isaliteral{29}{\isacharparenright}}} -and not as \isa{{\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{23}{\isacharhash}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{23}{\isacharhash}}\ z}. -The \isa{{\isadigit{6}}{\isadigit{5}}} is the priority of the infix \isa{{\isaliteral{23}{\isacharhash}}}. - -\begin{warn} - Syntax annotations can be powerful, but they are difficult to master and - are never necessary. You - could drop them from theory \isa{ToyList} and go back to the identifiers - \isa{Nil} and \isa{Cons}. Novices should avoid using - syntax annotations in their own theories. -\end{warn} -Next, two functions \isa{app} and \cdx{rev} are defined recursively, -in this order, because Isabelle insists on definition before use:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{primrec}\isamarkupfalse% -\ app\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{28}{\isacharparenleft}}\isakeyword{infixr}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{40}{\isacharat}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isadigit{6}}{\isadigit{5}}{\isaliteral{29}{\isacharparenright}}\ \isakeyword{where}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{40}{\isacharat}}\ ys\ \ \ \ \ \ \ {\isaliteral{3D}{\isacharequal}}\ ys{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{23}{\isacharhash}}\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ ys\ {\isaliteral{3D}{\isacharequal}}\ x\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{28}{\isacharparenleft}}xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -\isanewline -\isacommand{primrec}\isamarkupfalse% -\ rev\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}rev\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ \ \ \ \ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}rev\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{23}{\isacharhash}}\ xs{\isaliteral{29}{\isacharparenright}}\ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% -\begin{isamarkuptext}% -\noindent -Each function definition is of the form -\begin{center} -\isacommand{primrec} \textit{name} \isa{{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}} \textit{type} \textit{(optional syntax)} \isakeyword{where} \textit{equations} -\end{center} -The equations must be separated by \isa{{\isaliteral{7C}{\isacharbar}}}. -% -Function \isa{app} is annotated with concrete syntax. Instead of the -prefix syntax \isa{app\ xs\ ys} the infix -\isa{xs\ {\isaliteral{40}{\isacharat}}\ ys}\index{$HOL2list@\isa{\at}|bold} becomes the preferred -form. - -\index{*rev (constant)|(}\index{append function|(} -The equations for \isa{app} and \isa{rev} hardly need comments: -\isa{app} appends two lists and \isa{rev} reverses a list. The -keyword \commdx{primrec} indicates that the recursion is -of a particularly primitive kind where each recursive call peels off a datatype -constructor from one of the arguments. Thus the -recursion always terminates, i.e.\ the function is \textbf{total}. -\index{functions!total} - -The termination requirement is absolutely essential in HOL, a logic of total -functions. If we were to drop it, inconsistencies would quickly arise: the -``definition'' $f(n) = f(n)+1$ immediately leads to $0 = 1$ by subtracting -$f(n)$ on both sides. -% However, this is a subtle issue that we cannot discuss here further. - -\begin{warn} - As we have indicated, the requirement for total functions is an essential characteristic of HOL\@. It is only - because of totality that reasoning in HOL is comparatively easy. More - generally, the philosophy in HOL is to refrain from asserting arbitrary axioms (such as - function definitions whose totality has not been proved) because they - quickly lead to inconsistencies. Instead, fixed constructs for introducing - types and functions are offered (such as \isacommand{datatype} and - \isacommand{primrec}) which are guaranteed to preserve consistency. -\end{warn} - -\index{syntax}% -A remark about syntax. The textual definition of a theory follows a fixed -syntax with keywords like \isacommand{datatype} and \isacommand{end}. -% (see Fig.~\ref{fig:keywords} in Appendix~\ref{sec:Appendix} for a full list). -Embedded in this syntax are the types and formulae of HOL, whose syntax is -extensible (see \S\ref{sec:concrete-syntax}), e.g.\ by new user-defined infix operators. -To distinguish the two levels, everything -HOL-specific (terms and types) should be enclosed in -\texttt{"}\dots\texttt{"}. -To lessen this burden, quotation marks around a single identifier can be -dropped, unless the identifier happens to be a keyword, for example -\isa{"end"}. -When Isabelle prints a syntax error message, it refers to the HOL syntax as -the \textbf{inner syntax} and the enclosing theory language as the \textbf{outer syntax}. - -Comments\index{comment} must be in enclosed in \texttt{(* }and\texttt{ *)}. - -\section{Evaluation} -\index{evaluation} - -Assuming you have processed the declarations and definitions of -\texttt{ToyList} presented so far, you may want to test your -functions by running them. For example, what is the value of -\isa{rev\ {\isaliteral{28}{\isacharparenleft}}True\ {\isaliteral{23}{\isacharhash}}\ False\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}}? Command% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{value}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}rev\ {\isaliteral{28}{\isacharparenleft}}True\ {\isaliteral{23}{\isacharhash}}\ False\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% -\begin{isamarkuptext}% -\noindent yields the correct result \isa{False\ {\isaliteral{23}{\isacharhash}}\ True\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}. -But we can go beyond mere functional programming and evaluate terms with -variables in them, executing functions symbolically:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{value}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}rev\ {\isaliteral{28}{\isacharparenleft}}a\ {\isaliteral{23}{\isacharhash}}\ b\ {\isaliteral{23}{\isacharhash}}\ c\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% -\begin{isamarkuptext}% -\noindent yields \isa{c\ {\isaliteral{23}{\isacharhash}}\ b\ {\isaliteral{23}{\isacharhash}}\ a\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}. - -\section{An Introductory Proof} -\label{sec:intro-proof} - -Having convinced ourselves (as well as one can by testing) that our -definitions capture our intentions, we are ready to prove a few simple -theorems. This will illustrate not just the basic proof commands but -also the typical proof process. - -\subsubsection*{Main Goal.} - -Our goal is to show that reversing a list twice produces the original -list.% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{theorem}\isamarkupfalse% -\ rev{\isaliteral{5F}{\isacharunderscore}}rev\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}rev{\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\begin{isamarkuptxt}% -\index{theorem@\isacommand {theorem} (command)|bold}% -\noindent -This \isacommand{theorem} command does several things: -\begin{itemize} -\item -It establishes a new theorem to be proved, namely \isa{rev\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs}. -\item -It gives that theorem the name \isa{rev{\isaliteral{5F}{\isacharunderscore}}rev}, for later reference. -\item -It tells Isabelle (via the bracketed attribute \attrdx{simp}) to take the eventual theorem as a simplification rule: future proofs involving -simplification will replace occurrences of \isa{rev\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}} by -\isa{xs}. -\end{itemize} -The name and the simplification attribute are optional. -Isabelle's response is to print the initial proof state consisting -of some header information (like how many subgoals there are) followed by -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ rev\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs% -\end{isabelle} -For compactness reasons we omit the header in this tutorial. -Until we have finished a proof, the \rmindex{proof state} proper -always looks like this: -\begin{isabelle} -~1.~$G\sb{1}$\isanewline -~~\vdots~~\isanewline -~$n$.~$G\sb{n}$ -\end{isabelle} -The numbered lines contain the subgoals $G\sb{1}$, \dots, $G\sb{n}$ -that we need to prove to establish the main goal.\index{subgoals} -Initially there is only one subgoal, which is identical with the -main goal. (If you always want to see the main goal as well, -set the flag \isa{Proof.show_main_goal}\index{*show_main_goal (flag)} ---- this flag used to be set by default.) - -Let us now get back to \isa{rev\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs}. Properties of recursively -defined functions are best established by induction. In this case there is -nothing obvious except induction on \isa{xs}:% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\noindent\index{*induct_tac (method)}% -This tells Isabelle to perform induction on variable \isa{xs}. The suffix -\isa{tac} stands for \textbf{tactic},\index{tactics} -a synonym for ``theorem proving function''. -By default, induction acts on the first subgoal. The new proof state contains -two subgoals, namely the base case (\isa{Nil}) and the induction step -(\isa{Cons}): -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ rev\ {\isaliteral{28}{\isacharparenleft}}rev\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\isanewline -\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ list{\isaliteral{2E}{\isachardot}}\isanewline -\isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }rev\ {\isaliteral{28}{\isacharparenleft}}rev\ list{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ list\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ rev\ {\isaliteral{28}{\isacharparenleft}}rev\ {\isaliteral{28}{\isacharparenleft}}a\ {\isaliteral{23}{\isacharhash}}\ list{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ a\ {\isaliteral{23}{\isacharhash}}\ list% -\end{isabelle} - -The induction step is an example of the general format of a subgoal:\index{subgoals} -\begin{isabelle} -~$i$.~{\isasymAnd}$x\sb{1}$~\dots$x\sb{n}$.~{\it assumptions}~{\isasymLongrightarrow}~{\it conclusion} -\end{isabelle}\index{$IsaAnd@\isasymAnd|bold} -The prefix of bound variables \isasymAnd$x\sb{1}$~\dots~$x\sb{n}$ can be -ignored most of the time, or simply treated as a list of variables local to -this subgoal. Their deeper significance is explained in Chapter~\ref{chap:rules}. -The {\it assumptions}\index{assumptions!of subgoal} -are the local assumptions for this subgoal and {\it - conclusion}\index{conclusion!of subgoal} is the actual proposition to be proved. -Typical proof steps -that add new assumptions are induction and case distinction. In our example -the only assumption is the induction hypothesis \isa{rev\ {\isaliteral{28}{\isacharparenleft}}rev\ list{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ list}, where \isa{list} is a variable name chosen by Isabelle. If there -are multiple assumptions, they are enclosed in the bracket pair -\indexboldpos{\isasymlbrakk}{$Isabrl} and -\indexboldpos{\isasymrbrakk}{$Isabrr} and separated by semicolons. - -Let us try to solve both goals automatically:% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\noindent -This command tells Isabelle to apply a proof strategy called -\isa{auto} to all subgoals. Essentially, \isa{auto} tries to -simplify the subgoals. In our case, subgoal~1 is solved completely (thanks -to the equation \isa{rev\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}) and disappears; the simplified version -of subgoal~2 becomes the new subgoal~1: -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ list{\isaliteral{2E}{\isachardot}}\isanewline -\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }rev\ {\isaliteral{28}{\isacharparenleft}}rev\ list{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ list\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ rev\ {\isaliteral{28}{\isacharparenleft}}rev\ list\ {\isaliteral{40}{\isacharat}}\ a\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ a\ {\isaliteral{23}{\isacharhash}}\ list% -\end{isabelle} -In order to simplify this subgoal further, a lemma suggests itself.% -\end{isamarkuptxt}% -\isamarkuptrue% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\isamarkupsubsubsection{First Lemma% -} -\isamarkuptrue% -% -\begin{isamarkuptext}% -\indexbold{abandoning a proof}\indexbold{proofs!abandoning} -After abandoning the above proof attempt (at the shell level type -\commdx{oops}) we start a new proof:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ rev{\isaliteral{5F}{\isacharunderscore}}app\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}rev{\isaliteral{28}{\isacharparenleft}}xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}rev\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\begin{isamarkuptxt}% -\noindent The keywords \commdx{theorem} and -\commdx{lemma} are interchangeable and merely indicate -the importance we attach to a proposition. Therefore we use the words -\emph{theorem} and \emph{lemma} pretty much interchangeably, too. - -There are two variables that we could induct on: \isa{xs} and -\isa{ys}. Because \isa{{\isaliteral{40}{\isacharat}}} is defined by recursion on -the first argument, \isa{xs} is the correct one:% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\noindent -This time not even the base case is solved automatically:% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ rev\ ys\ {\isaliteral{3D}{\isacharequal}}\ rev\ ys\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}% -\end{isabelle} -Again, we need to abandon this proof attempt and prove another simple lemma -first. In the future the step of abandoning an incomplete proof before -embarking on the proof of a lemma usually remains implicit.% -\end{isamarkuptxt}% -\isamarkuptrue% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\isamarkupsubsubsection{Second Lemma% -} -\isamarkuptrue% -% -\begin{isamarkuptext}% -We again try the canonical proof procedure:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ app{\isaliteral{5F}{\isacharunderscore}}Nil{\isadigit{2}}\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}xs\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ xs{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\noindent -It works, yielding the desired message \isa{No\ subgoals{\isaliteral{21}{\isacharbang}}}: -\begin{isabelle}% -xs\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ xs\isanewline -No\ subgoals{\isaliteral{21}{\isacharbang}}% -\end{isabelle} -We still need to confirm that the proof is now finished:% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{done}\isamarkupfalse% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -As a result of that final \commdx{done}, Isabelle associates the lemma just proved -with its name. In this tutorial, we sometimes omit to show that final \isacommand{done} -if it is obvious from the context that the proof is finished. - -% Instead of \isacommand{apply} followed by a dot, you can simply write -% \isacommand{by}\indexbold{by}, which we do most of the time. -Notice that in lemma \isa{app{\isaliteral{5F}{\isacharunderscore}}Nil{\isadigit{2}}}, -as printed out after the final \isacommand{done}, the free variable \isa{xs} has been -replaced by the unknown \isa{{\isaliteral{3F}{\isacharquery}}xs}, just as explained in -\S\ref{sec:variables}. - -Going back to the proof of the first lemma% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ rev{\isaliteral{5F}{\isacharunderscore}}app\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}rev{\isaliteral{28}{\isacharparenleft}}xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}rev\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\noindent -we find that this time \isa{auto} solves the base case, but the -induction step merely simplifies to -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ list{\isaliteral{2E}{\isachardot}}\isanewline -\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }rev\ {\isaliteral{28}{\isacharparenleft}}list\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ rev\ ys\ {\isaliteral{40}{\isacharat}}\ rev\ list\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline -\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{28}{\isacharparenleft}}rev\ ys\ {\isaliteral{40}{\isacharat}}\ rev\ list{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ a\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ rev\ ys\ {\isaliteral{40}{\isacharat}}\ rev\ list\ {\isaliteral{40}{\isacharat}}\ a\ {\isaliteral{23}{\isacharhash}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}% -\end{isabelle} -Now we need to remember that \isa{{\isaliteral{40}{\isacharat}}} associates to the right, and that -\isa{{\isaliteral{23}{\isacharhash}}} and \isa{{\isaliteral{40}{\isacharat}}} have the same priority (namely the \isa{{\isadigit{6}}{\isadigit{5}}} -in their \isacommand{infixr} annotation). Thus the conclusion really is -\begin{isabelle} -~~~~~(rev~ys~@~rev~list)~@~(a~\#~[])~=~rev~ys~@~(rev~list~@~(a~\#~[])) -\end{isabelle} -and the missing lemma is associativity of \isa{{\isaliteral{40}{\isacharat}}}.% -\end{isamarkuptxt}% -\isamarkuptrue% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\isamarkupsubsubsection{Third Lemma% -} -\isamarkuptrue% -% -\begin{isamarkuptext}% -Abandoning the previous attempt, the canonical proof procedure -succeeds without further ado.% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ app{\isaliteral{5F}{\isacharunderscore}}assoc\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ zs\ {\isaliteral{3D}{\isacharequal}}\ xs\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{28}{\isacharparenleft}}ys\ {\isaliteral{40}{\isacharat}}\ zs{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{done}\isamarkupfalse% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -Now we can prove the first lemma:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ rev{\isaliteral{5F}{\isacharunderscore}}app\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}rev{\isaliteral{28}{\isacharparenleft}}xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}rev\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{done}\isamarkupfalse% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -Finally, we prove our main theorem:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{theorem}\isamarkupfalse% -\ rev{\isaliteral{5F}{\isacharunderscore}}rev\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}rev{\isaliteral{28}{\isacharparenleft}}rev\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{done}\isamarkupfalse% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -The final \commdx{end} tells Isabelle to close the current theory because -we are finished with its development:% -\index{*rev (constant)|)}\index{append function|)}% -\end{isamarkuptext}% -\isamarkuptrue% -% -\isadelimtheory -% -\endisadelimtheory -% -\isatagtheory -\isacommand{end}\isamarkupfalse% -% -\endisatagtheory -{\isafoldtheory}% -% -\isadelimtheory -% -\endisadelimtheory -\isanewline -\end{isabellebody}% -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "root" -%%% End: