diff -r 0c86acc069ad -r 5deda0549f97 doc-src/TutorialI/document/AB.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/TutorialI/document/AB.tex Thu Jul 26 17:16:02 2012 +0200 @@ -0,0 +1,462 @@ +% +\begin{isabellebody}% +\def\isabellecontext{AB}% +% +\isadelimtheory +% +\endisadelimtheory +% +\isatagtheory +% +\endisatagtheory +{\isafoldtheory}% +% +\isadelimtheory +% +\endisadelimtheory +% +\isamarkupsection{Case Study: A Context Free Grammar% +} +\isamarkuptrue% +% +\begin{isamarkuptext}% +\label{sec:CFG} +\index{grammars!defining inductively|(}% +Grammars are nothing but shorthands for inductive definitions of nonterminals +which represent sets of strings. For example, the production +$A \to B c$ is short for +\[ w \in B \Longrightarrow wc \in A \] +This section demonstrates this idea with an example +due to Hopcroft and Ullman, a grammar for generating all words with an +equal number of $a$'s and~$b$'s: +\begin{eqnarray} +S &\to& \epsilon \mid b A \mid a B \nonumber\\ +A &\to& a S \mid b A A \nonumber\\ +B &\to& b S \mid a B B \nonumber +\end{eqnarray} +At the end we say a few words about the relationship between +the original proof \cite[p.\ts81]{HopcroftUllman} and our formal version. + +We start by fixing the alphabet, which consists only of \isa{a}'s +and~\isa{b}'s:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{datatype}\isamarkupfalse% +\ alfa\ {\isaliteral{3D}{\isacharequal}}\ a\ {\isaliteral{7C}{\isacharbar}}\ b% +\begin{isamarkuptext}% +\noindent +For convenience we include the following easy lemmas as simplification rules:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ a{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{3D}{\isacharequal}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{3D}{\isacharequal}}\ a{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{by}\isamarkupfalse% +\ {\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac\ x{\isaliteral{2C}{\isacharcomma}}\ auto{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +Words over this alphabet are of type \isa{alfa\ list}, and +the three nonterminals are declared as sets of such words. +The productions above are recast as a \emph{mutual} inductive +definition\index{inductive definition!simultaneous} +of \isa{S}, \isa{A} and~\isa{B}:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse% +\isanewline +\ \ S\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}alfa\ list\ set{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{and}\isanewline +\ \ A\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}alfa\ list\ set{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{and}\isanewline +\ \ B\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}alfa\ list\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +\isakeyword{where}\isanewline +\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ b{\isaliteral{23}{\isacharhash}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ a{\isaliteral{23}{\isacharhash}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +\isanewline +{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S\ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ a{\isaliteral{23}{\isacharhash}}w\ \ \ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ v{\isaliteral{5C3C696E3E}{\isasymin}}A{\isaliteral{3B}{\isacharsemicolon}}\ w{\isaliteral{5C3C696E3E}{\isasymin}}A\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ b{\isaliteral{23}{\isacharhash}}v{\isaliteral{40}{\isacharat}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +\isanewline +{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S\ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ b{\isaliteral{23}{\isacharhash}}w\ \ \ {\isaliteral{5C3C696E3E}{\isasymin}}\ B{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +{\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ v\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B{\isaliteral{3B}{\isacharsemicolon}}\ w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ a{\isaliteral{23}{\isacharhash}}v{\isaliteral{40}{\isacharat}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B{\isaliteral{22}{\isachardoublequoteclose}}% +\begin{isamarkuptext}% +\noindent +First we show that all words in \isa{S} contain the same number of \isa{a}'s and \isa{b}'s. Since the definition of \isa{S} is by mutual +induction, so is the proof: we show at the same time that all words in +\isa{A} contain one more \isa{a} than \isa{b} and all words in \isa{B} contain one more \isa{b} than \isa{a}.% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ correctness{\isaliteral{3A}{\isacharcolon}}\isanewline +\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\ \ \ \ \ {\isaliteral{5C3C616E643E}{\isasymand}}\isanewline +\ \ \ {\isaliteral{28}{\isacharparenleft}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\isanewline +\ \ \ {\isaliteral{28}{\isacharparenleft}}w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +These propositions are expressed with the help of the predefined \isa{filter} function on lists, which has the convenient syntax \isa{{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}xs{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}}, the list of all elements \isa{x} in \isa{xs} such that \isa{P\ x} +holds. Remember that on lists \isa{size} and \isa{length} are synonymous. + +The proof itself is by rule induction and afterwards automatic:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{by}\isamarkupfalse% +\ {\isaliteral{28}{\isacharparenleft}}rule\ S{\isaliteral{5F}{\isacharunderscore}}A{\isaliteral{5F}{\isacharunderscore}}B{\isaliteral{2E}{\isachardot}}induct{\isaliteral{2C}{\isacharcomma}}\ auto{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +This may seem surprising at first, and is indeed an indication of the power +of inductive definitions. But it is also quite straightforward. For example, +consider the production $A \to b A A$: if $v,w \in A$ and the elements of $A$ +contain one more $a$ than~$b$'s, then $bvw$ must again contain one more $a$ +than~$b$'s. + +As usual, the correctness of syntactic descriptions is easy, but completeness +is hard: does \isa{S} contain \emph{all} words with an equal number of +\isa{a}'s and \isa{b}'s? It turns out that this proof requires the +following lemma: every string with two more \isa{a}'s than \isa{b}'s can be cut somewhere such that each half has one more \isa{a} than +\isa{b}. This is best seen by imagining counting the difference between the +number of \isa{a}'s and \isa{b}'s starting at the left end of the +word. We start with 0 and end (at the right end) with 2. Since each move to the +right increases or decreases the difference by 1, we must have passed through +1 on our way from 0 to 2. Formally, we appeal to the following discrete +intermediate value theorem \isa{nat{\isadigit{0}}{\isaliteral{5F}{\isacharunderscore}}intermed{\isaliteral{5F}{\isacharunderscore}}int{\isaliteral{5F}{\isacharunderscore}}val} +\begin{isabelle}% +\ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{3C}{\isacharless}}n{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6261723E}{\isasymbar}}f\ {\isaliteral{28}{\isacharparenleft}}i\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{2D}{\isacharminus}}\ f\ i{\isaliteral{5C3C6261723E}{\isasymbar}}\ {\isaliteral{5C3C6C653E}{\isasymle}}\ {\isadigit{1}}{\isaliteral{3B}{\isacharsemicolon}}\ f\ {\isadigit{0}}\ {\isaliteral{5C3C6C653E}{\isasymle}}\ k{\isaliteral{3B}{\isacharsemicolon}}\ k\ {\isaliteral{5C3C6C653E}{\isasymle}}\ f\ n{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline +\isaindent{\ \ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{5C3C6C653E}{\isasymle}}n{\isaliteral{2E}{\isachardot}}\ f\ i\ {\isaliteral{3D}{\isacharequal}}\ k% +\end{isabelle} +where \isa{f} is of type \isa{nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ int}, \isa{int} are the integers, +\isa{{\isaliteral{5C3C6261723E}{\isasymbar}}{\isaliteral{2E}{\isachardot}}{\isaliteral{5C3C6261723E}{\isasymbar}}} is the absolute value function\footnote{See +Table~\ref{tab:ascii} in the Appendix for the correct \textsc{ascii} +syntax.}, and \isa{{\isadigit{1}}} is the integer 1 (see \S\ref{sec:numbers}). + +First we show that our specific function, the difference between the +numbers of \isa{a}'s and \isa{b}'s, does indeed only change by 1 in every +move to the right. At this point we also start generalizing from \isa{a}'s +and \isa{b}'s to an arbitrary property \isa{P}. Otherwise we would have +to prove the desired lemma twice, once as stated above and once with the +roles of \isa{a}'s and \isa{b}'s interchanged.% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ step{\isadigit{1}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i\ {\isaliteral{3C}{\isacharless}}\ size\ w{\isaliteral{2E}{\isachardot}}\isanewline +\ \ {\isaliteral{5C3C6261723E}{\isasymbar}}{\isaliteral{28}{\isacharparenleft}}int{\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ {\isaliteral{28}{\isacharparenleft}}i{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}{\isaliteral{29}{\isacharparenright}}\ w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{2D}{\isacharminus}}int{\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ {\isaliteral{28}{\isacharparenleft}}i{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}{\isaliteral{29}{\isacharparenright}}\ w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\ \ \ {\isaliteral{2D}{\isacharminus}}\ {\isaliteral{28}{\isacharparenleft}}int{\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{2D}{\isacharminus}}int{\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{5C3C6261723E}{\isasymbar}}\ {\isaliteral{5C3C6C653E}{\isasymle}}\ {\isadigit{1}}{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +The lemma is a bit hard to read because of the coercion function +\isa{int\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ int}. It is required because \isa{size} returns +a natural number, but subtraction on type~\isa{nat} will do the wrong thing. +Function \isa{take} is predefined and \isa{take\ i\ xs} is the prefix of +length \isa{i} of \isa{xs}; below we also need \isa{drop\ i\ xs}, which +is what remains after that prefix has been dropped from \isa{xs}. + +The proof is by induction on \isa{w}, with a trivial base case, and a not +so trivial induction step. Since it is essentially just arithmetic, we do not +discuss it.% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ w{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ abs{\isaliteral{5F}{\isacharunderscore}}if\ take{\isaliteral{5F}{\isacharunderscore}}Cons\ split{\isaliteral{3A}{\isacharcolon}}\ nat{\isaliteral{2E}{\isachardot}}split{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{done}\isamarkupfalse% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +Finally we come to the above-mentioned lemma about cutting in half a word with two more elements of one sort than of the other sort:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ part{\isadigit{1}}{\isaliteral{3A}{\isacharcolon}}\isanewline +\ {\isaliteral{22}{\isachardoublequoteopen}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{2B}{\isacharplus}}{\isadigit{2}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline +\ \ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{5C3C6C653E}{\isasymle}}size\ w{\isaliteral{2E}{\isachardot}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +This is proved by \isa{force} with the help of the intermediate value theorem, +instantiated appropriately and with its first premise disposed of by lemma +\isa{step{\isadigit{1}}}:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}insert\ nat{\isadigit{0}}{\isaliteral{5F}{\isacharunderscore}}intermed{\isaliteral{5F}{\isacharunderscore}}int{\isaliteral{5F}{\isacharunderscore}}val{\isaliteral{5B}{\isacharbrackleft}}OF\ step{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ of\ {\isaliteral{22}{\isachardoublequoteopen}}P{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{22}{\isachardoublequoteopen}}w{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isadigit{1}}{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{by}\isamarkupfalse% +\ force% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent + +Lemma \isa{part{\isadigit{1}}} tells us only about the prefix \isa{take\ i\ w}. +An easy lemma deals with the suffix \isa{drop\ i\ w}:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ part{\isadigit{2}}{\isaliteral{3A}{\isacharcolon}}\isanewline +\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w\ {\isaliteral{40}{\isacharat}}\ drop\ i\ w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\isanewline +\ \ \ \ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w\ {\isaliteral{40}{\isacharat}}\ drop\ i\ w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{2B}{\isacharplus}}{\isadigit{2}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline +\ \ \ \ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline +\ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}drop\ i\ w{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}drop\ i\ w{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}P\ x{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{by}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp\ del{\isaliteral{3A}{\isacharcolon}}\ append{\isaliteral{5F}{\isacharunderscore}}take{\isaliteral{5F}{\isacharunderscore}}drop{\isaliteral{5F}{\isacharunderscore}}id{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +In the proof we have disabled the normally useful lemma +\begin{isabelle} +\isa{take\ n\ xs\ {\isaliteral{40}{\isacharat}}\ drop\ n\ xs\ {\isaliteral{3D}{\isacharequal}}\ xs} +\rulename{append_take_drop_id} +\end{isabelle} +to allow the simplifier to apply the following lemma instead: +\begin{isabelle}% +\ \ \ \ \ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C696E3E}{\isasymin}}xs{\isaliteral{40}{\isacharat}}ys{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C696E3E}{\isasymin}}xs{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C696E3E}{\isasymin}}ys{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{5D}{\isacharbrackright}}% +\end{isabelle} + +To dispose of trivial cases automatically, the rules of the inductive +definition are declared simplification rules:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{declare}\isamarkupfalse% +\ S{\isaliteral{5F}{\isacharunderscore}}A{\isaliteral{5F}{\isacharunderscore}}B{\isaliteral{2E}{\isachardot}}intros{\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}% +\begin{isamarkuptext}% +\noindent +This could have been done earlier but was not necessary so far. + +The completeness theorem tells us that if a word has the same number of +\isa{a}'s and \isa{b}'s, then it is in \isa{S}, and similarly +for \isa{A} and \isa{B}:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{theorem}\isamarkupfalse% +\ completeness{\isaliteral{3A}{\isacharcolon}}\isanewline +\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{5D}{\isacharbrackright}}\ \ \ \ \ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ S{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\isanewline +\ \ \ {\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\isanewline +\ \ \ {\isaliteral{28}{\isacharparenleft}}size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ size{\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}w{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ w\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +The proof is by induction on \isa{w}. Structural induction would fail here +because, as we can see from the grammar, we need to make bigger steps than +merely appending a single letter at the front. Hence we induct on the length +of \isa{w}, using the induction rule \isa{length{\isaliteral{5F}{\isacharunderscore}}induct}:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ w\ rule{\isaliteral{3A}{\isacharcolon}}\ length{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rename{\isaliteral{5F}{\isacharunderscore}}tac\ w{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +The \isa{rule} parameter tells \isa{induct{\isaliteral{5F}{\isacharunderscore}}tac} explicitly which induction +rule to use. For details see \S\ref{sec:complete-ind} below. +In this case the result is that we may assume the lemma already +holds for all words shorter than \isa{w}. Because the induction step renames +the induction variable we rename it back to \isa{w}. + +The proof continues with a case distinction on \isa{w}, +on whether \isa{w} is empty or not.% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac\ w{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +Simplification disposes of the base case and leaves only a conjunction +of two step cases to be proved: +if \isa{w\ {\isaliteral{3D}{\isacharequal}}\ a\ {\isaliteral{23}{\isacharhash}}\ v} and \begin{isabelle}% +\ \ \ \ \ length\ {\isaliteral{28}{\isacharparenleft}}if\ x\ {\isaliteral{3D}{\isacharequal}}\ a\ then\ {\isaliteral{5B}{\isacharbrackleft}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ v{\isaliteral{5D}{\isacharbrackright}}\ else\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\isanewline +\isaindent{\ \ \ \ \ }length\ {\isaliteral{28}{\isacharparenleft}}if\ x\ {\isaliteral{3D}{\isacharequal}}\ b\ then\ {\isaliteral{5B}{\isacharbrackleft}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ v{\isaliteral{5D}{\isacharbrackright}}\ else\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{2}}% +\end{isabelle} then +\isa{b\ {\isaliteral{23}{\isacharhash}}\ v\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A}, and similarly for \isa{w\ {\isaliteral{3D}{\isacharequal}}\ b\ {\isaliteral{23}{\isacharhash}}\ v}. +We only consider the first case in detail. + +After breaking the conjunction up into two cases, we can apply +\isa{part{\isadigit{1}}} to the assumption that \isa{w} contains two more \isa{a}'s than \isa{b}'s.% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ conjI{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}frule\ part{\isadigit{1}}{\isaliteral{5B}{\isacharbrackleft}}of\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{2C}{\isacharcomma}}\ simplified{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +This yields an index \isa{i\ {\isaliteral{5C3C6C653E}{\isasymle}}\ length\ v} such that +\begin{isabelle}% +\ \ \ \ \ length\ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ v\ {\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ length\ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}take\ i\ v\ {\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ b{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}% +\end{isabelle} +With the help of \isa{part{\isadigit{2}}} it follows that +\begin{isabelle}% +\ \ \ \ \ length\ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}drop\ i\ v\ {\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ length\ {\isaliteral{5B}{\isacharbrackleft}}x{\isaliteral{5C3C6C6566746172726F773E}{\isasymleftarrow}}drop\ i\ v\ {\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ b{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{1}}% +\end{isabelle}% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}drule\ part{\isadigit{2}}{\isaliteral{5B}{\isacharbrackleft}}of\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}a{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{2C}{\isacharcomma}}\ simplified{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\ \ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}assumption{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +Now it is time to decompose \isa{v} in the conclusion \isa{b\ {\isaliteral{23}{\isacharhash}}\ v\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A} +into \isa{take\ i\ v\ {\isaliteral{40}{\isacharat}}\ drop\ i\ v},% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule{\isaliteral{5F}{\isacharunderscore}}tac\ n{\isadigit{1}}{\isaliteral{3D}{\isacharequal}}i\ \isakeyword{and}\ t{\isaliteral{3D}{\isacharequal}}v\ \isakeyword{in}\ subst{\isaliteral{5B}{\isacharbrackleft}}OF\ append{\isaliteral{5F}{\isacharunderscore}}take{\isaliteral{5F}{\isacharunderscore}}drop{\isaliteral{5F}{\isacharunderscore}}id{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +(the variables \isa{n{\isadigit{1}}} and \isa{t} are the result of composing the +theorems \isa{subst} and \isa{append{\isaliteral{5F}{\isacharunderscore}}take{\isaliteral{5F}{\isacharunderscore}}drop{\isaliteral{5F}{\isacharunderscore}}id}) +after which the appropriate rule of the grammar reduces the goal +to the two subgoals \isa{take\ i\ v\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A} and \isa{drop\ i\ v\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A}:% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ S{\isaliteral{5F}{\isacharunderscore}}A{\isaliteral{5F}{\isacharunderscore}}B{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +Both subgoals follow from the induction hypothesis because both \isa{take\ i\ v} and \isa{drop\ i\ v} are shorter than \isa{w}:% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}force\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ min{\isaliteral{5F}{\isacharunderscore}}less{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}disj{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}force\ split\ add{\isaliteral{3A}{\isacharcolon}}\ nat{\isaliteral{5F}{\isacharunderscore}}diff{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +The case \isa{w\ {\isaliteral{3D}{\isacharequal}}\ b\ {\isaliteral{23}{\isacharhash}}\ v} is proved analogously:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}frule\ part{\isadigit{1}}{\isaliteral{5B}{\isacharbrackleft}}of\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{2C}{\isacharcomma}}\ simplified{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}drule\ part{\isadigit{2}}{\isaliteral{5B}{\isacharbrackleft}}of\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}b{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{2C}{\isacharcomma}}\ simplified{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}assumption{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule{\isaliteral{5F}{\isacharunderscore}}tac\ n{\isadigit{1}}{\isaliteral{3D}{\isacharequal}}i\ \isakeyword{and}\ t{\isaliteral{3D}{\isacharequal}}v\ \isakeyword{in}\ subst{\isaliteral{5B}{\isacharbrackleft}}OF\ append{\isaliteral{5F}{\isacharunderscore}}take{\isaliteral{5F}{\isacharunderscore}}drop{\isaliteral{5F}{\isacharunderscore}}id{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ S{\isaliteral{5F}{\isacharunderscore}}A{\isaliteral{5F}{\isacharunderscore}}B{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}force\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ min{\isaliteral{5F}{\isacharunderscore}}less{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}disj{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{by}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}force\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ min{\isaliteral{5F}{\isacharunderscore}}less{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}disj\ split\ add{\isaliteral{3A}{\isacharcolon}}\ nat{\isaliteral{5F}{\isacharunderscore}}diff{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +We conclude this section with a comparison of our proof with +Hopcroft\index{Hopcroft, J. E.} and Ullman's\index{Ullman, J. D.} +\cite[p.\ts81]{HopcroftUllman}. +For a start, the textbook +grammar, for no good reason, excludes the empty word, thus complicating +matters just a little bit: they have 8 instead of our 7 productions. + +More importantly, the proof itself is different: rather than +separating the two directions, they perform one induction on the +length of a word. This deprives them of the beauty of rule induction, +and in the easy direction (correctness) their reasoning is more +detailed than our \isa{auto}. For the hard part (completeness), they +consider just one of the cases that our \isa{simp{\isaliteral{5F}{\isacharunderscore}}all} disposes of +automatically. Then they conclude the proof by saying about the +remaining cases: ``We do this in a manner similar to our method of +proof for part (1); this part is left to the reader''. But this is +precisely the part that requires the intermediate value theorem and +thus is not at all similar to the other cases (which are automatic in +Isabelle). The authors are at least cavalier about this point and may +even have overlooked the slight difficulty lurking in the omitted +cases. Such errors are found in many pen-and-paper proofs when they +are scrutinized formally.% +\index{grammars!defining inductively|)}% +\end{isamarkuptext}% +\isamarkuptrue% +% +\isadelimtheory +% +\endisadelimtheory +% +\isatagtheory +% +\endisatagtheory +{\isafoldtheory}% +% +\isadelimtheory +% +\endisadelimtheory +\end{isabellebody}% +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "root" +%%% End: