diff -r 0c86acc069ad -r 5deda0549f97 doc-src/TutorialI/document/PDL.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/TutorialI/document/PDL.tex Thu Jul 26 17:16:02 2012 +0200 @@ -0,0 +1,342 @@ +% +\begin{isabellebody}% +\def\isabellecontext{PDL}% +% +\isadelimtheory +% +\endisadelimtheory +% +\isatagtheory +% +\endisatagtheory +{\isafoldtheory}% +% +\isadelimtheory +% +\endisadelimtheory +% +\isamarkupsubsection{Propositional Dynamic Logic --- PDL% +} +\isamarkuptrue% +% +\begin{isamarkuptext}% +\index{PDL|(} +The formulae of PDL are built up from atomic propositions via +negation and conjunction and the two temporal +connectives \isa{AX} and \isa{EF}\@. Since formulae are essentially +syntax trees, they are naturally modelled as a datatype:% +\footnote{The customary definition of PDL +\cite{HarelKT-DL} looks quite different from ours, but the two are easily +shown to be equivalent.}% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{datatype}\isamarkupfalse% +\ formula\ {\isaliteral{3D}{\isacharequal}}\ Atom\ {\isaliteral{22}{\isachardoublequoteopen}}atom{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ Neg\ formula\isanewline +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ And\ formula\ formula\isanewline +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ AX\ formula\isanewline +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ EF\ formula% +\begin{isamarkuptext}% +\noindent +This resembles the boolean expression case study in +\S\ref{sec:boolex}. +A validity relation between states and formulae specifies the semantics. +The syntax annotation allows us to write \isa{s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f} instead of +\hbox{\isa{valid\ s\ f}}. The definition is by recursion over the syntax:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{primrec}\isamarkupfalse% +\ valid\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ formula\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5F}{\isacharunderscore}}\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ {\isaliteral{5F}{\isacharunderscore}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isadigit{8}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}{\isadigit{8}}{\isadigit{0}}{\isaliteral{5D}{\isacharbrackright}}\ {\isadigit{8}}{\isadigit{0}}{\isaliteral{29}{\isacharparenright}}\isanewline +\isakeyword{where}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ Atom\ a\ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}a\ {\isaliteral{5C3C696E3E}{\isasymin}}\ L\ s{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ Neg\ f\ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}{\isaliteral{28}{\isacharparenleft}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ And\ f\ g\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f\ {\isaliteral{5C3C616E643E}{\isasymand}}\ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ g{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ AX\ f\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EF\ f\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% +\begin{isamarkuptext}% +\noindent +The first three equations should be self-explanatory. The temporal formula +\isa{AX\ f} means that \isa{f} is true in \emph{A}ll ne\emph{X}t states whereas +\isa{EF\ f} means that there \emph{E}xists some \emph{F}uture state in which \isa{f} is +true. The future is expressed via \isa{\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}}, the reflexive transitive +closure. Because of reflexivity, the future includes the present. + +Now we come to the model checker itself. It maps a formula into the +set of states where the formula is true. It too is defined by +recursion over the syntax:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{primrec}\isamarkupfalse% +\ mc\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}formula\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}Atom\ a{\isaliteral{29}{\isacharparenright}}\ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ a\ {\isaliteral{5C3C696E3E}{\isasymin}}\ L\ s{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}Neg\ f{\isaliteral{29}{\isacharparenright}}\ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{2D}{\isacharminus}}mc\ f{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}And\ f\ g{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ mc\ f\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ mc\ g{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}AX\ f{\isaliteral{29}{\isacharparenright}}\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ \ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ mc\ f{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}EF\ f{\isaliteral{29}{\isacharparenright}}\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ lfp{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ mc\ f\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ {\isaliteral{28}{\isacharparenleft}}M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% +\begin{isamarkuptext}% +\noindent +Only the equation for \isa{EF} deserves some comments. Remember that the +postfix \isa{{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}} and the infix \isa{{\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}} are predefined and denote the +converse of a relation and the image of a set under a relation. Thus +\isa{M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T} is the set of all predecessors of \isa{T} and the least +fixed point (\isa{lfp}) of \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ mc\ f\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T} is the least set +\isa{T} containing \isa{mc\ f} and all predecessors of \isa{T}. If you +find it hard to see that \isa{mc\ {\isaliteral{28}{\isacharparenleft}}EF\ f{\isaliteral{29}{\isacharparenright}}} contains exactly those states from +which there is a path to a state where \isa{f} is true, do not worry --- this +will be proved in a moment. + +First we prove monotonicity of the function inside \isa{lfp} +in order to make sure it really has a least fixed point.% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}mono{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ {\isaliteral{28}{\isacharparenleft}}M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ monoI{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +\ blast\isanewline +\isacommand{done}\isamarkupfalse% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +Now we can relate model checking and semantics. For the \isa{EF} case we need +a separate lemma:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ EF{\isaliteral{5F}{\isacharunderscore}}lemma{\isaliteral{3A}{\isacharcolon}}\isanewline +\ \ {\isaliteral{22}{\isachardoublequoteopen}}lfp{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ {\isaliteral{28}{\isacharparenleft}}M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +The equality is proved in the canonical fashion by proving that each set +includes the other; the inclusion is shown pointwise:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ equalityI{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ subsetI{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +Simplification leaves us with the following first subgoal +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}s{\isaliteral{2E}{\isachardot}}\ s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A% +\end{isabelle} +which is proved by \isa{lfp}-induction:% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}erule\ lfp{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{5F}{\isacharunderscore}}set{\isaliteral{29}{\isacharparenright}}\isanewline +\ \ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{29}{\isacharparenright}}\isanewline +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +Having disposed of the monotonicity subgoal, +simplification leaves us with the following goal: +\begin{isabelle} +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline +\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline +\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A +\end{isabelle} +It is proved by \isa{blast}, using the transitivity of +\isa{M\isactrlsup {\isacharasterisk}}.% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtrancl{\isaliteral{5F}{\isacharunderscore}}trans{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +We now return to the second set inclusion subgoal, which is again proved +pointwise:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}rule\ subsetI{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{2C}{\isacharcomma}}\ clarify{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +After simplification and clarification we are left with +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}% +\end{isabelle} +This goal is proved by induction on \isa{{\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}}. But since the model +checker works backwards (from \isa{t} to \isa{s}), we cannot use the +induction theorem \isa{rtrancl{\isaliteral{5F}{\isacharunderscore}}induct}: it works in the +forward direction. Fortunately the converse induction theorem +\isa{converse{\isaliteral{5F}{\isacharunderscore}}rtrancl{\isaliteral{5F}{\isacharunderscore}}induct} already exists: +\begin{isabelle}% +\ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ P\ b{\isaliteral{3B}{\isacharsemicolon}}\isanewline +\isaindent{\ \ \ \ \ \ }{\isaliteral{5C3C416E643E}{\isasymAnd}}y\ z{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}z{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ P\ z{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ y{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline +\isaindent{\ \ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ a% +\end{isabelle} +It says that if \isa{{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}} and we know \isa{P\ b} then we can infer +\isa{P\ a} provided each step backwards from a predecessor \isa{z} of +\isa{b} preserves \isa{P}.% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}erule\ converse{\isaliteral{5F}{\isacharunderscore}}rtrancl{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +The base case +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ t{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}% +\end{isabelle} +is solved by unrolling \isa{lfp} once% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ t{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}% +\end{isabelle} +and disposing of the resulting trivial subgoal automatically:% +\end{isamarkuptxt}% +\isamarkuptrue% +\ \isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +The proof of the induction step is identical to the one for the base case:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{done}\isamarkupfalse% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +The main theorem is proved in the familiar manner: induction followed by +\isa{auto} augmented with the lemma as a simplification rule.% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{theorem}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}mc\ f\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ f{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ EF{\isaliteral{5F}{\isacharunderscore}}lemma{\isaliteral{29}{\isacharparenright}}\isanewline +\isacommand{done}\isamarkupfalse% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\begin{exercise} +\isa{AX} has a dual operator \isa{EN} +(``there exists a next state such that'')% +\footnote{We cannot use the customary \isa{EX}: it is reserved +as the \textsc{ascii}-equivalent of \isa{{\isaliteral{5C3C6578697374733E}{\isasymexists}}}.} +with the intended semantics +\begin{isabelle}% +\ \ \ \ \ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EN\ f\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}% +\end{isabelle} +Fortunately, \isa{EN\ f} can already be expressed as a PDL formula. How? + +Show that the semantics for \isa{EF} satisfies the following recursion equation: +\begin{isabelle}% +\ \ \ \ \ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EF\ f\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f\ {\isaliteral{5C3C6F723E}{\isasymor}}\ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EN\ {\isaliteral{28}{\isacharparenleft}}EF\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}% +\end{isabelle} +\end{exercise} +\index{PDL|)}% +\end{isamarkuptext}% +\isamarkuptrue% +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\isadelimtheory +% +\endisadelimtheory +% +\isatagtheory +% +\endisatagtheory +{\isafoldtheory}% +% +\isadelimtheory +% +\endisadelimtheory +\end{isabellebody}% +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "root" +%%% End: