diff -r 0c86acc069ad -r 5deda0549f97 doc-src/TutorialI/document/Pairs.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/TutorialI/document/Pairs.tex Thu Jul 26 17:16:02 2012 +0200 @@ -0,0 +1,394 @@ +% +\begin{isabellebody}% +\def\isabellecontext{Pairs}% +% +\isadelimtheory +% +\endisadelimtheory +% +\isatagtheory +% +\endisatagtheory +{\isafoldtheory}% +% +\isadelimtheory +% +\endisadelimtheory +% +\isamarkupsection{Pairs and Tuples% +} +\isamarkuptrue% +% +\begin{isamarkuptext}% +\label{sec:products} +Ordered pairs were already introduced in \S\ref{sec:pairs}, but only with a minimal +repertoire of operations: pairing and the two projections \isa{fst} and +\isa{snd}. In any non-trivial application of pairs you will find that this +quickly leads to unreadable nests of projections. This +section introduces syntactic sugar to overcome this +problem: pattern matching with tuples.% +\end{isamarkuptext}% +\isamarkuptrue% +% +\isamarkupsubsection{Pattern Matching with Tuples% +} +\isamarkuptrue% +% +\begin{isamarkuptext}% +Tuples may be used as patterns in $\lambda$-abstractions, +for example \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}x{\isaliteral{2B}{\isacharplus}}y{\isaliteral{2B}{\isacharplus}}z} and \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}x{\isaliteral{2B}{\isacharplus}}y{\isaliteral{2B}{\isacharplus}}z}. In fact, +tuple patterns can be used in most variable binding constructs, +and they can be nested. Here are +some typical examples: +\begin{quote} +\isa{let\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ f\ z\ in\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}}\\ +\isa{case\ xs\ of\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isadigit{0}}\ {\isaliteral{7C}{\isacharbar}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{23}{\isacharhash}}\ zs\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ x\ {\isaliteral{2B}{\isacharplus}}\ y}\\ +\isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{5C3C696E3E}{\isasymin}}A{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}y}\\ +\isa{{\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{2C}{\isacharcomma}}z{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}z{\isaliteral{7D}{\isacharbraceright}}}\\ +\isa{{\isaliteral{5C3C556E696F6E3E}{\isasymUnion}}\isaliteral{5C3C5E627375623E}{}\isactrlbsub {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{5C3C696E3E}{\isasymin}}A\isaliteral{5C3C5E657375623E}{}\isactrlesub \ {\isaliteral{7B}{\isacharbraceleft}}x\ {\isaliteral{2B}{\isacharplus}}\ y{\isaliteral{7D}{\isacharbraceright}}} +\end{quote} +The intuitive meanings of these expressions should be obvious. +Unfortunately, we need to know in more detail what the notation really stands +for once we have to reason about it. Abstraction +over pairs and tuples is merely a convenient shorthand for a more complex +internal representation. Thus the internal and external form of a term may +differ, which can affect proofs. If you want to avoid this complication, +stick to \isa{fst} and \isa{snd} and write \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}p{\isaliteral{2E}{\isachardot}}\ fst\ p\ {\isaliteral{2B}{\isacharplus}}\ snd\ p} +instead of \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{2B}{\isacharplus}}y}. These terms are distinct even though they +denote the same function. + +Internally, \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ t} becomes \isa{split\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x\ y{\isaliteral{2E}{\isachardot}}\ t{\isaliteral{29}{\isacharparenright}}}, where +\cdx{split} is the uncurrying function of type \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}c{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}c} defined as +\begin{center} +\isa{prod{\isaliteral{5F}{\isacharunderscore}}case\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}c\ p{\isaliteral{2E}{\isachardot}}\ c\ {\isaliteral{28}{\isacharparenleft}}fst\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}snd\ p{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}} +\hfill(\isa{split{\isaliteral{5F}{\isacharunderscore}}def}) +\end{center} +Pattern matching in +other variable binding constructs is translated similarly. Thus we need to +understand how to reason about such constructs.% +\end{isamarkuptext}% +\isamarkuptrue% +% +\isamarkupsubsection{Theorem Proving% +} +\isamarkuptrue% +% +\begin{isamarkuptext}% +The most obvious approach is the brute force expansion of \isa{prod{\isaliteral{5F}{\isacharunderscore}}case}:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}x{\isaliteral{29}{\isacharparenright}}\ p\ {\isaliteral{3D}{\isacharequal}}\ fst\ p{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{by}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +This works well if rewriting with \isa{split{\isaliteral{5F}{\isacharunderscore}}def} finishes the +proof, as it does above. But if it does not, you end up with exactly what +we are trying to avoid: nests of \isa{fst} and \isa{snd}. Thus this +approach is neither elegant nor very practical in large examples, although it +can be effective in small ones. + +If we consider why this lemma presents a problem, +we realize that we need to replace variable~\isa{p} by some pair \isa{{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}}. Then both sides of the +equation would simplify to \isa{a} by the simplification rules +\isa{{\isaliteral{28}{\isacharparenleft}}case\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ x\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ f\ a\ b} and \isa{fst\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ a}. +To reason about tuple patterns requires some way of +converting a variable of product type into a pair. +In case of a subterm of the form \isa{case\ p\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ x\ xa} this is easy: the split +rule \isa{split{\isaliteral{5F}{\isacharunderscore}}split} replaces \isa{p} by a pair:% +\index{*split (method)}% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}y{\isaliteral{29}{\isacharparenright}}\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}split\ split{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x\ y{\isaliteral{2E}{\isachardot}}\ p\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ y\ {\isaliteral{3D}{\isacharequal}}\ snd\ p% +\end{isabelle} +This subgoal is easily proved by simplification. Thus we could have combined +simplification and splitting in one command that proves the goal outright:% +\end{isamarkuptxt}% +\isamarkuptrue% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{by}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp\ split{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +Let us look at a second example:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}let\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p\ in\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ x{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp\ only{\isaliteral{3A}{\isacharcolon}}\ Let{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ case\ p\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ x% +\end{isabelle} +A paired \isa{let} reduces to a paired $\lambda$-abstraction, which +can be split as above. The same is true for paired set comprehension:% +\end{isamarkuptxt}% +\isamarkuptrue% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}y{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +\ simp% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}case\ p\ of\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ x\ {\isaliteral{3D}{\isacharequal}}\ xa{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p% +\end{isabelle} +Again, simplification produces a term suitable for \isa{split{\isaliteral{5F}{\isacharunderscore}}split} +as above. If you are worried about the strange form of the premise: +\isa{split\ {\isaliteral{28}{\isacharparenleft}}op\ {\isaliteral{3D}{\isacharequal}}{\isaliteral{29}{\isacharparenright}}} is short for \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ y}. +The same proof procedure works for% +\end{isamarkuptxt}% +\isamarkuptrue% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ x{\isaliteral{3D}{\isacharequal}}y{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ fst\ p\ {\isaliteral{3D}{\isacharequal}}\ snd\ p{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +except that we now have to use \isa{split{\isaliteral{5F}{\isacharunderscore}}split{\isaliteral{5F}{\isacharunderscore}}asm}, because +\isa{prod{\isaliteral{5F}{\isacharunderscore}}case} occurs in the assumptions. + +However, splitting \isa{prod{\isaliteral{5F}{\isacharunderscore}}case} is not always a solution, as no \isa{prod{\isaliteral{5F}{\isacharunderscore}}case} +may be present in the goal. Consider the following function:% +\end{isamarkuptxt}% +\isamarkuptrue% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +\isacommand{primrec}\isamarkupfalse% +\ swap\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\ {\isaliteral{22}{\isachardoublequoteopen}}swap\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% +\begin{isamarkuptext}% +\noindent +Note that the above \isacommand{primrec} definition is admissible +because \isa{{\isaliteral{5C3C74696D65733E}{\isasymtimes}}} is a datatype. When we now try to prove% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}swap{\isaliteral{28}{\isacharparenleft}}swap\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p{\isaliteral{22}{\isachardoublequoteclose}}% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +% +\begin{isamarkuptxt}% +\noindent +simplification will do nothing, because the defining equation for +\isa{swap} expects a pair. Again, we need to turn \isa{p} +into a pair first, but this time there is no \isa{prod{\isaliteral{5F}{\isacharunderscore}}case} in sight. +The only thing we can do is to split the term by hand:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac\ p{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ b{\isaliteral{2E}{\isachardot}}\ p\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ swap\ {\isaliteral{28}{\isacharparenleft}}swap\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ p% +\end{isabelle} +Again, \methdx{case_tac} is applicable because \isa{{\isaliteral{5C3C74696D65733E}{\isasymtimes}}} is a datatype. +The subgoal is easily proved by \isa{simp}. + +Splitting by \isa{case{\isaliteral{5F}{\isacharunderscore}}tac} also solves the previous examples and may thus +appear preferable to the more arcane methods introduced first. However, see +the warning about \isa{case{\isaliteral{5F}{\isacharunderscore}}tac} in \S\ref{sec:struct-ind-case}. + +Alternatively, you can split \emph{all} \isa{{\isaliteral{5C3C416E643E}{\isasymAnd}}}-quantified variables +in a goal with the rewrite rule \isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all}:% +\end{isamarkuptxt}% +\isamarkuptrue% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C416E643E}{\isasymAnd}}p\ q{\isaliteral{2E}{\isachardot}}\ swap{\isaliteral{28}{\isacharparenleft}}swap\ p{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ q\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ p\ {\isaliteral{3D}{\isacharequal}}\ q{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp\ only{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}% +\begin{isamarkuptxt}% +\noindent +\begin{isabelle}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ b\ aa\ ba{\isaliteral{2E}{\isachardot}}\ swap\ {\isaliteral{28}{\isacharparenleft}}swap\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}aa{\isaliteral{2C}{\isacharcomma}}\ ba{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}aa{\isaliteral{2C}{\isacharcomma}}\ ba{\isaliteral{29}{\isacharparenright}}% +\end{isabelle}% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}\isamarkupfalse% +\ simp\isanewline +\isacommand{done}\isamarkupfalse% +% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +Note that we have intentionally included only \isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all} +in the first simplification step, and then we simplify again. +This time the reason was not merely +pedagogical: +\isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all} may interfere with other functions +of the simplifier. +The following command could fail (here it does not) +where two separate \isa{simp} applications succeed.% +\end{isamarkuptext}% +\isamarkuptrue% +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{apply}\isamarkupfalse% +{\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +Finally, the simplifier automatically splits all \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}} and +\isa{{\isaliteral{5C3C6578697374733E}{\isasymexists}}}-quantified variables:% +\end{isamarkuptext}% +\isamarkuptrue% +\isacommand{lemma}\isamarkupfalse% +\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}q{\isaliteral{2E}{\isachardot}}\ swap\ p\ {\isaliteral{3D}{\isacharequal}}\ swap\ q{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +% +\isadelimproof +% +\endisadelimproof +% +\isatagproof +\isacommand{by}\isamarkupfalse% +\ simp% +\endisatagproof +{\isafoldproof}% +% +\isadelimproof +% +\endisadelimproof +% +\begin{isamarkuptext}% +\noindent +To turn off this automatic splitting, disable the +responsible simplification rules: +\begin{center} +\isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}a\ b{\isaliteral{2E}{\isachardot}}\ P\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}} +\hfill +(\isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}All})\\ +\isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}a\ b{\isaliteral{2E}{\isachardot}}\ P\ {\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}} +\hfill +(\isa{split{\isaliteral{5F}{\isacharunderscore}}paired{\isaliteral{5F}{\isacharunderscore}}Ex}) +\end{center}% +\end{isamarkuptext}% +\isamarkuptrue% +% +\isadelimtheory +% +\endisadelimtheory +% +\isatagtheory +% +\endisatagtheory +{\isafoldtheory}% +% +\isadelimtheory +% +\endisadelimtheory +\end{isabellebody}% +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "root" +%%% End: