diff -r 99f0aee4adbd -r 5e013478bced src/HOL/Analysis/Lipschitz.thy --- a/src/HOL/Analysis/Lipschitz.thy Tue Aug 28 21:08:42 2018 +0200 +++ b/src/HOL/Analysis/Lipschitz.thy Wed Aug 29 07:50:28 2018 +0100 @@ -7,11 +7,11 @@ imports Borel_Space begin -definition lipschitz_on +definition%important lipschitz_on where "lipschitz_on C U f \ (0 \ C \ (\x \ U. \y\U. dist (f x) (f y) \ C * dist x y))" bundle lipschitz_syntax begin -notation lipschitz_on ("_-lipschitz'_on" [1000]) +notation%important lipschitz_on ("_-lipschitz'_on" [1000]) end bundle no_lipschitz_syntax begin no_notation lipschitz_on ("_-lipschitz'_on" [1000]) @@ -103,7 +103,7 @@ qed qed (rule lipschitz_on_nonneg[OF f]) -proposition lipschitz_on_concat_max: +lemma lipschitz_on_concat_max: fixes a b c::real assumes f: "L-lipschitz_on {a .. b} f" assumes g: "M-lipschitz_on {b .. c} g" @@ -118,7 +118,7 @@ subsubsection \Continuity\ -lemma lipschitz_on_uniformly_continuous: +proposition lipschitz_on_uniformly_continuous: assumes "L-lipschitz_on X f" shows "uniformly_continuous_on X f" unfolding uniformly_continuous_on_def @@ -132,7 +132,7 @@ by (force intro!: exI[where x="e/(L + 1)"] simp: field_simps) qed -lemma lipschitz_on_continuous_on: +proposition lipschitz_on_continuous_on: "continuous_on X f" if "L-lipschitz_on X f" by (rule uniformly_continuous_imp_continuous[OF lipschitz_on_uniformly_continuous[OF that]]) @@ -143,7 +143,7 @@ subsubsection \Differentiable functions\ -lemma bounded_derivative_imp_lipschitz: +proposition bounded_derivative_imp_lipschitz: assumes "\x. x \ X \ (f has_derivative f' x) (at x within X)" assumes convex: "convex X" assumes "\x. x \ X \ onorm (f' x) \ C" "0 \ C" @@ -154,7 +154,7 @@ qed fact -subsubsection \Structural introduction rules\ +subsubsection%unimportant \Structural introduction rules\ named_theorems lipschitz_intros "structural introduction rules for Lipschitz controls" @@ -480,7 +480,7 @@ subsection \Local Lipschitz continuity (uniform for a family of functions)\ -definition local_lipschitz:: +definition%important local_lipschitz:: "'a::metric_space set \ 'b::metric_space set \ ('a \ 'b \ 'c::metric_space) \ bool" where "local_lipschitz T X f \ \x \ X. \t \ T. @@ -785,7 +785,7 @@ by (auto intro: exI[where x=1]) qed -lemma c1_implies_local_lipschitz: +proposition c1_implies_local_lipschitz: fixes T::"real set" and X::"'a::{banach,heine_borel} set" and f::"real \ 'a \ 'a" assumes f': "\t x. t \ T \ x \ X \ (f t has_derivative blinfun_apply (f' (t, x))) (at x)"