diff -r f424e164d752 -r 5e315defb038 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Sat May 09 17:20:04 2020 +0000 +++ b/src/HOL/Deriv.thy Mon May 11 11:15:41 2020 +0100 @@ -572,6 +572,7 @@ bounded_linear f' \ ((\y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) \ 0) (at x)" using has_derivative_within [of f f' x UNIV] by simp + lemma has_derivative_zero_unique: assumes "((\x. 0) has_derivative F) (at x)" shows "F = (\h. 0)" @@ -618,6 +619,9 @@ unfolding fun_eq_iff right_minus_eq . qed +lemma has_derivative_Uniq: "\\<^sub>\\<^sub>1F. (f has_derivative F) (at x)" + by (simp add: Uniq_def has_derivative_unique) + subsection \Differentiability predicate\ @@ -970,6 +974,9 @@ lemma DERIV_unique: "DERIV f x :> D \ DERIV f x :> E \ D = E" unfolding DERIV_def by (rule LIM_unique) +lemma DERIV_Uniq: "\\<^sub>\\<^sub>1D. DERIV f x :> D" + by (simp add: DERIV_unique Uniq_def) + lemma DERIV_sum[derivative_intros]: "(\ n. n \ S \ ((\x. f x n) has_field_derivative (f' x n)) F) \ ((\x. sum (f x) S) has_field_derivative sum (f' x) S) F"