diff -r 8ce596cae2a3 -r 5e323695f26e src/HOL/BNF/Examples/Derivation_Trees/Parallel.thy --- a/src/HOL/BNF/Examples/Derivation_Trees/Parallel.thy Tue Oct 16 17:33:08 2012 +0200 +++ b/src/HOL/BNF/Examples/Derivation_Trees/Parallel.thy Tue Oct 16 18:05:28 2012 +0200 @@ -13,7 +13,7 @@ no_notation plus_class.plus (infixl "+" 65) no_notation Sublist.parallel (infixl "\" 50) - + consts Nplus :: "N \ N \ N" (infixl "+" 60) axiomatization where @@ -69,8 +69,8 @@ section{* Structural coinductive proofs *} -lemma set_rel_sum_rel_eq[simp]: -"set_rel (sum_rel (op =) \) A1 A2 \ +lemma set_rel_sum_rel_eq[simp]: +"set_rel (sum_rel (op =) \) A1 A2 \ Inl -` A1 = Inl -` A2 \ set_rel \ (Inr -` A1) (Inr -` A2)" unfolding set_rel_sum_rel set_rel_eq .. @@ -80,7 +80,7 @@ let ?\ = "\ trA trB. \ tr1 tr2. trA = tr1 \ tr2 \ trB = tr2 \ tr1" {fix trA trB assume "?\ trA trB" hence "trA = trB" - apply (induct rule: dtree_coinduct) + apply (induct rule: dtree_coinduct) unfolding set_rel_sum_rel set_rel_eq unfolding set_rel_def proof safe fix tr1 tr2 show "root (tr1 \ tr2) = root (tr2 \ tr1)" unfolding root_par by (rule Nplus_comm) @@ -115,15 +115,15 @@ "\ trA trB. \ tr1 tr2 tr3. trA = (tr1 \ tr2) \ tr3 \ trB = tr1 \ (tr2 \ tr3)" {fix trA trB assume "?\ trA trB" hence "trA = trB" - apply (induct rule: dtree_coinduct) + apply (induct rule: dtree_coinduct) unfolding set_rel_sum_rel set_rel_eq unfolding set_rel_def proof safe fix tr1 tr2 tr3 show "root ((tr1 \ tr2) \ tr3) = root (tr1 \ (tr2 \ tr3))" unfolding root_par by (rule Nplus_assoc) next - fix n tr1 tr2 tr3 assume "Inl n \ (cont ((tr1 \ tr2) \ tr3))" + fix n tr1 tr2 tr3 assume "Inl n \ (cont ((tr1 \ tr2) \ tr3))" thus "n \ Inl -` (cont (tr1 \ tr2 \ tr3))" unfolding Inl_in_cont_par by simp next - fix n tr1 tr2 tr3 assume "Inl n \ (cont (tr1 \ tr2 \ tr3))" + fix n tr1 tr2 tr3 assume "Inl n \ (cont (tr1 \ tr2 \ tr3))" thus "n \ Inl -` (cont ((tr1 \ tr2) \ tr3))" unfolding Inl_in_cont_par by simp next fix trA' tr1 tr2 tr3 assume "Inr trA' \ cont ((tr1 \ tr2) \ tr3)"