diff -r f74a4175a3a8 -r 5e51075cbd97 src/HOL/Big_Operators.thy --- a/src/HOL/Big_Operators.thy Thu Sep 08 08:41:28 2011 -0700 +++ b/src/HOL/Big_Operators.thy Fri Sep 09 00:22:18 2011 +0200 @@ -1517,7 +1517,7 @@ proof qed (auto simp add: max_def) lemma max_lattice: - "class.semilattice_inf (op \) (op >) max" + "class.semilattice_inf max (op \) (op >)" by (fact min_max.dual_semilattice) lemma dual_max: @@ -1611,7 +1611,7 @@ assumes "finite A" and "x \ A" shows "x \ Max A" proof - - interpret semilattice_inf "op \" "op >" max + interpret semilattice_inf max "op \" "op >" by (rule max_lattice) from assms show ?thesis by (simp add: Max_def fold1_belowI) qed @@ -1625,7 +1625,7 @@ assumes "finite A" and "A \ {}" shows "Max A \ x \ (\a\A. a \ x)" proof - - interpret semilattice_inf "op \" "op >" max + interpret semilattice_inf max "op \" "op >" by (rule max_lattice) from assms show ?thesis by (simp add: Max_def below_fold1_iff) qed