diff -r 459ac22f47ff -r 600f1c93124f src/HOL/Library/Ring_and_Field.thy --- a/src/HOL/Library/Ring_and_Field.thy Wed Aug 07 20:03:38 2002 +0200 +++ b/src/HOL/Library/Ring_and_Field.thy Wed Aug 07 20:05:43 2002 +0200 @@ -9,7 +9,7 @@ \author{Gertrud Bauer and Markus Wenzel} *} -theory Ring_and_Field = Main: +theory Ring_and_Field = Main: subsection {* Abstract algebraic structures *} @@ -47,7 +47,7 @@ subsubsection {* Derived rules for addition *} -lemma right_zero [simp]: "a + 0 = (a::'a::ring)" +lemma right_zero [simp]: "a + 0 = (a::'a::ring)" proof - have "a + 0 = 0 + a" by (simp only: add_commute) also have "... = a" by simp @@ -55,11 +55,11 @@ qed lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ring))" -by(rule mk_left_commute[OF add_assoc add_commute]) + by (rule mk_left_commute [of "op +", OF add_assoc add_commute]) theorems ring_add_ac = add_assoc add_commute add_left_commute -lemma right_minus [simp]: "a + -(a::'a::ring) = 0" +lemma right_minus [simp]: "a + -(a::'a::ring) = 0" proof - have "a + -a = -a + a" by (simp add: ring_add_ac) also have "... = 0" by simp @@ -67,7 +67,7 @@ qed lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ring))" -proof +proof have "a = a - b + b" by (simp add: diff_minus ring_add_ac) also assume "a - b = 0" finally show "a = b" by simp @@ -94,7 +94,7 @@ theorems ring_mult_ac = mult_assoc mult_commute mult_left_commute -lemma right_inverse [simp]: "a \ 0 ==> a * inverse (a::'a::field) = 1" +lemma right_inverse [simp]: "a \ 0 ==> a * inverse (a::'a::field) = 1" proof - have "a * inverse a = inverse a * a" by (simp add: ring_mult_ac) also assume "a \ 0" @@ -103,7 +103,7 @@ qed lemma right_inverse_eq: "b \ 0 ==> (a / b = 1) = (a = (b::'a::field))" -proof +proof assume neq: "b \ 0" { hence "a = (a / b) * b" by (simp add: divide_inverse ring_mult_ac)