diff -r 8007f10195af -r 6108dddad9f0 src/HOL/Analysis/Function_Topology.thy --- a/src/HOL/Analysis/Function_Topology.thy Mon Jan 16 21:53:44 2017 +0100 +++ b/src/HOL/Analysis/Function_Topology.thy Tue Jan 17 11:26:21 2017 +0100 @@ -17,7 +17,7 @@ to each factor is continuous. To form a product of objects in Isabelle/HOL, all these objects should be subsets of a common type -'a. The product is then @{term "PiE I X"}, the set of elements from 'i to 'a such that the $i$-th +'a. The product is then @{term "Pi\<^sub>E I X"}, the set of elements from 'i to 'a such that the $i$-th coordinate belongs to $X\;i$ for all $i \in I$. Hence, to form a product of topological spaces, all these spaces should be subsets of a common type. @@ -696,7 +696,7 @@ lemma product_topology_countable_basis: shows "\K::(('a::countable \ 'b::second_countable_topology) set set). topological_basis K \ countable K \ - (\k\K. \X. (k = PiE UNIV X) \ (\i. open (X i)) \ finite {i. X i \ UNIV})" + (\k\K. \X. (k = Pi\<^sub>E UNIV X) \ (\i. open (X i)) \ finite {i. X i \ UNIV})" proof - obtain B::"'b set set" where B: "countable B \ topological_basis B" using ex_countable_basis by auto @@ -708,7 +708,7 @@ using that unfolding B2_def using B topological_basis_open by auto define K where "K = {Pi\<^sub>E UNIV X | X. (\i::'a. X i \ B2) \ finite {i. X i \ UNIV}}" - have i: "\k\K. \X. (k = PiE UNIV X) \ (\i. open (X i)) \ finite {i. X i \ UNIV}" + have i: "\k\K. \X. (k = Pi\<^sub>E UNIV X) \ (\i. open (X i)) \ finite {i. X i \ UNIV}" unfolding K_def using `\U. U \ B2 \ open U` by auto have "countable {X. (\(i::'a). X i \ B2) \ finite {i. X i \ UNIV}}" @@ -1335,11 +1335,11 @@ "sets (Pi\<^sub>M UNIV (\i::('a::countable). borel::('b::second_countable_topology measure))) = sets borel" proof obtain K::"('a \ 'b) set set" where K: "topological_basis K" "countable K" - "\k. k \ K \ \X. (k = PiE UNIV X) \ (\i. open (X i)) \ finite {i. X i \ UNIV}" + "\k. k \ K \ \X. (k = Pi\<^sub>E UNIV X) \ (\i. open (X i)) \ finite {i. X i \ UNIV}" using product_topology_countable_basis by fast have *: "k \ sets (Pi\<^sub>M UNIV (\_. borel))" if "k \ K" for k proof - - obtain X where H: "k = PiE UNIV X" "\i. open (X i)" "finite {i. X i \ UNIV}" + obtain X where H: "k = Pi\<^sub>E UNIV X" "\i. open (X i)" "finite {i. X i \ UNIV}" using K(3)[OF `k \ K`] by blast show ?thesis unfolding H(1) sets_PiM_finite space_borel using borel_open[OF H(2)] H(3) by auto qed