diff -r 80df7c90e315 -r 61188c781cdd src/HOL/ex/Parallel_Example.thy --- a/src/HOL/ex/Parallel_Example.thy Thu May 24 07:59:41 2018 +0200 +++ b/src/HOL/ex/Parallel_Example.thy Thu May 24 09:18:29 2018 +0200 @@ -68,13 +68,11 @@ by pat_completeness auto termination factorise_from \ \tuning of this proof is left as an exercise to the reader\ -term measure -apply (relation "measure (\(k, n). 2 * n - k)") -apply (auto simp add: prod_eq_iff) -apply (case_tac "k \ 2 * q") -apply (rule diff_less_mono) -apply auto -done + apply (relation "measure (\(k, n). 2 * n - k)") + apply (auto simp add: prod_eq_iff algebra_simps elim!: dvdE) + apply (case_tac "k \ ka * 2") + apply (auto intro: diff_less_mono) + done definition factorise :: "nat \ nat list" where "factorise n = factorise_from 2 n"