diff -r bc050f23c3f8 -r 6145dd7538d7 src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Thu Jun 24 17:51:28 2004 +0200 +++ b/src/HOL/Complex/Complex.thy Thu Jun 24 17:52:02 2004 +0200 @@ -455,7 +455,7 @@ lemma complex_mod_mult_cnj: "cmod(z * cnj(z)) = cmod(z) ^ 2" apply (induct z, simp add: complex_mod complex_cnj complex_mult) -apply (simp add: power2_eq_square real_abs_def) +apply (simp add: power2_eq_square abs_if linorder_not_less) done lemma complex_mod_squared: "cmod(Complex x y) ^ 2 = x ^ 2 + y ^ 2" @@ -571,7 +571,7 @@ complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)" -instance complex :: ringpower +instance complex :: recpower proof fix z :: complex fix n :: nat @@ -947,7 +947,7 @@ test "(a*(b*c)) / ((b::complex)) = (uu::complex)"; test "(a*(b*c)) / (d*(b::complex)*(x*a)) = (uu::complex)"; -(*FIXME: what do we do about this?*) +FIXME: what do we do about this? test "a*(b*c)/(y*z) = d*(b::complex)*(x*a)/z"; *)