diff -r bc050f23c3f8 -r 6145dd7538d7 src/HOL/Hyperreal/HyperPow.thy --- a/src/HOL/Hyperreal/HyperPow.thy Thu Jun 24 17:51:28 2004 +0200 +++ b/src/HOL/Hyperreal/HyperPow.thy Thu Jun 24 17:52:02 2004 +0200 @@ -16,7 +16,7 @@ hpowr_Suc: "r ^ (Suc n) = (r::hypreal) * (r ^ n)" -instance hypreal :: ringpower +instance hypreal :: recpower proof fix z :: hypreal fix n :: nat @@ -39,25 +39,21 @@ lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r" by simp -lemma hrealpow_two_le: "(0::hypreal) \ r ^ Suc (Suc 0)" +lemma hrealpow_two_le [simp]: "(0::hypreal) \ r ^ Suc (Suc 0)" by (auto simp add: zero_le_mult_iff) -declare hrealpow_two_le [simp] -lemma hrealpow_two_le_add_order: +lemma hrealpow_two_le_add_order [simp]: "(0::hypreal) \ u ^ Suc (Suc 0) + v ^ Suc (Suc 0)" by (simp only: hrealpow_two_le hypreal_le_add_order) -declare hrealpow_two_le_add_order [simp] -lemma hrealpow_two_le_add_order2: +lemma hrealpow_two_le_add_order2 [simp]: "(0::hypreal) \ u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)" -apply (simp only: hrealpow_two_le hypreal_le_add_order) -done -declare hrealpow_two_le_add_order2 [simp] +by (simp only: hrealpow_two_le hypreal_le_add_order) lemma hypreal_add_nonneg_eq_0_iff: "[| 0 \ x; 0 \ y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))" -apply arith -done +by arith + text{*FIXME: DELETE THESE*} lemma hypreal_three_squares_add_zero_iff: @@ -78,12 +74,11 @@ lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \ 2 ^ n" by (insert power_increasing [of 0 n "2::hypreal"], simp) -lemma two_hrealpow_gt: "hypreal_of_nat n < 2 ^ n" +lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n" apply (induct_tac "n") apply (auto simp add: hypreal_of_nat_Suc left_distrib) apply (cut_tac n = n in two_hrealpow_ge_one, arith) done -declare two_hrealpow_gt [simp] lemma hrealpow: "Abs_hypreal(hyprel``{%n. X n}) ^ m = Abs_hypreal(hyprel``{%n. (X n) ^ m})" @@ -99,11 +94,9 @@ subsection{*Literal Arithmetic Involving Powers and Type @{typ hypreal}*} -lemma hypreal_of_real_power: "hypreal_of_real (x ^ n) = hypreal_of_real x ^ n" -apply (induct_tac "n") -apply (simp_all add: nat_mult_distrib) -done -declare hypreal_of_real_power [simp] +lemma hypreal_of_real_power [simp]: + "hypreal_of_real (x ^ n) = hypreal_of_real x ^ n" +by (induct_tac "n", simp_all add: nat_mult_distrib) lemma power_hypreal_of_real_number_of: "(number_of v :: hypreal) ^ n = hypreal_of_real ((number_of v) ^ n)" @@ -169,11 +162,10 @@ apply (auto simp add: hyperpow hypnat_add hypreal_mult power_add) done -lemma hyperpow_one: "r pow (1::hypnat) = r" +lemma hyperpow_one [simp]: "r pow (1::hypnat) = r" apply (unfold hypnat_one_def, cases r) apply (auto simp add: hyperpow) done -declare hyperpow_one [simp] lemma hyperpow_two: "r pow ((1::hypnat) + (1::hypnat)) = r * r" @@ -200,57 +192,48 @@ apply (auto intro: power_mono) done -lemma hyperpow_eq_one: "1 pow n = (1::hypreal)" +lemma hyperpow_eq_one [simp]: "1 pow n = (1::hypreal)" apply (cases n) apply (auto simp add: hypreal_one_def hyperpow) done -declare hyperpow_eq_one [simp] -lemma hrabs_hyperpow_minus_one: "abs(-1 pow n) = (1::hypreal)" +lemma hrabs_hyperpow_minus_one [simp]: "abs(-1 pow n) = (1::hypreal)" apply (subgoal_tac "abs ((- (1::hypreal)) pow n) = (1::hypreal) ") apply simp apply (cases n) apply (auto simp add: hypreal_one_def hyperpow hypreal_minus hypreal_hrabs) done -declare hrabs_hyperpow_minus_one [simp] lemma hyperpow_mult: "(r * s) pow n = (r pow n) * (s pow n)" apply (cases n, cases r, cases s) apply (auto simp add: hyperpow hypreal_mult power_mult_distrib) done -lemma hyperpow_two_le: "(0::hypreal) \ r pow ((1::hypnat) + (1::hypnat))" +lemma hyperpow_two_le [simp]: "0 \ r pow (1 + 1)" by (auto simp add: hyperpow_two zero_le_mult_iff) -declare hyperpow_two_le [simp] lemma hrabs_hyperpow_two [simp]: "abs(x pow (1 + 1)) = x pow (1 + 1)" -by (simp add: hrabs_def hyperpow_two_le) +by (simp add: abs_if hyperpow_two_le linorder_not_less) -lemma hyperpow_two_hrabs: - "abs(x) pow (1 + 1) = x pow (1 + 1)" -apply (simp add: hyperpow_hrabs) -done -declare hyperpow_two_hrabs [simp] +lemma hyperpow_two_hrabs [simp]: "abs(x) pow (1 + 1) = x pow (1 + 1)" +by (simp add: hyperpow_hrabs) -lemma hyperpow_two_gt_one: - "(1::hypreal) < r ==> 1 < r pow (1 + 1)" +lemma hyperpow_two_gt_one: "1 < r ==> 1 < r pow (1 + 1)" apply (auto simp add: hyperpow_two) apply (rule_tac y = "1*1" in order_le_less_trans) apply (rule_tac [2] hypreal_mult_less_mono, auto) done lemma hyperpow_two_ge_one: - "(1::hypreal) \ r ==> 1 \ r pow (1 + 1)" -apply (auto dest!: order_le_imp_less_or_eq intro: hyperpow_two_gt_one order_less_imp_le) -done + "1 \ r ==> 1 \ r pow (1 + 1)" +by (auto dest!: order_le_imp_less_or_eq intro: hyperpow_two_gt_one order_less_imp_le) -lemma two_hyperpow_ge_one: "(1::hypreal) \ 2 pow n" +lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \ 2 pow n" apply (rule_tac y = "1 pow n" in order_trans) apply (rule_tac [2] hyperpow_le, auto) done -declare two_hyperpow_ge_one [simp] -lemma hyperpow_minus_one2: +lemma hyperpow_minus_one2 [simp]: "-1 pow ((1 + 1)*n) = (1::hypreal)" apply (subgoal_tac " (- ((1::hypreal))) pow ((1 + 1)*n) = (1::hypreal) ") apply simp @@ -258,7 +241,6 @@ apply (auto simp add: nat_mult_2 [symmetric] hyperpow hypnat_add hypreal_minus left_distrib) done -declare hyperpow_minus_one2 [simp] lemma hyperpow_less_le: "[|(0::hypreal) \ r; r \ 1; n < N|] ==> r pow N \ r pow n" @@ -277,18 +259,16 @@ lemma hyperpow_realpow: "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)" -apply (simp add: hypreal_of_real_def hypnat_of_nat_eq hyperpow) -done +by (simp add: hypreal_of_real_def hypnat_of_nat_eq hyperpow) -lemma hyperpow_SReal: "(hypreal_of_real r) pow (hypnat_of_nat n) \ Reals" -apply (unfold SReal_def) -apply (simp (no_asm) del: hypreal_of_real_power add: hyperpow_realpow) -done -declare hyperpow_SReal [simp] +lemma hyperpow_SReal [simp]: + "(hypreal_of_real r) pow (hypnat_of_nat n) \ Reals" +by (simp del: hypreal_of_real_power add: hyperpow_realpow SReal_def) -lemma hyperpow_zero_HNatInfinite: "N \ HNatInfinite ==> (0::hypreal) pow N = 0" + +lemma hyperpow_zero_HNatInfinite [simp]: + "N \ HNatInfinite ==> (0::hypreal) pow N = 0" by (drule HNatInfinite_is_Suc, auto) -declare hyperpow_zero_HNatInfinite [simp] lemma hyperpow_le_le: "[| (0::hypreal) \ r; r \ 1; n \ N |] ==> r pow N \ r pow n"