diff -r b58a575d211e -r 62e47f06d22c src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Sun Mar 03 20:27:42 2019 +0100 +++ b/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Tue Mar 05 07:00:21 2019 +0000 @@ -386,7 +386,7 @@ by (simp add: real) qed } ultimately show ?thesis - by (intro exI[of _ "\i x. ennreal (f i x)"]) auto + by (intro exI [of _ "\i x. ennreal (f i x)"]) (auto simp add: image_comp) qed lemma borel_measurable_implies_simple_function_sequence': @@ -394,7 +394,8 @@ assumes u: "u \ borel_measurable M" obtains f where "\i. simple_function M (f i)" "incseq f" "\i x. f i x < top" "\x. (SUP i. f i x) = u x" - using borel_measurable_implies_simple_function_sequence[OF u] by (auto simp: fun_eq_iff) blast + using borel_measurable_implies_simple_function_sequence [OF u] + by (metis SUP_apply) lemma%important simple_function_induct [consumes 1, case_names cong set mult add, induct set: simple_function]: @@ -481,7 +482,7 @@ proof%unimportant (induct rule: borel_measurable_implies_simple_function_sequence') fix U assume U: "\i. simple_function M (U i)" "incseq U" "\i x. U i x < top" and sup: "\x. (SUP i. U i x) = u x" have u_eq: "u = (SUP i. U i)" - using u sup by auto + using u by (auto simp add: image_comp sup) have not_inf: "\x i. x \ space M \ U i x < top" using U by (auto simp: image_iff eq_commute) @@ -1538,7 +1539,7 @@ using N by auto from f show ?thesis apply induct - apply (simp_all add: nn_integral_add nn_integral_cmult nn_integral_monotone_convergence_SUP N) + apply (simp_all add: nn_integral_add nn_integral_cmult nn_integral_monotone_convergence_SUP N image_comp) apply (auto intro!: nn_integral_cong cong: nn_integral_cong simp: N(2)[symmetric]) done qed @@ -1667,7 +1668,7 @@ by (subst nn_integral_cong[OF eq]) (auto simp add: emeasure_distr intro!: nn_integral_indicator[symmetric] measurable_sets) qed (simp_all add: measurable_compose[OF T] T nn_integral_cmult nn_integral_add - nn_integral_monotone_convergence_SUP le_fun_def incseq_def) + nn_integral_monotone_convergence_SUP le_fun_def incseq_def image_comp) subsubsection%unimportant \Counting space\ @@ -2198,7 +2199,7 @@ have eq: "AE x in M. f x * (SUP i. U i x) = (SUP i. f x * U i x)" by eventually_elim (simp add: SUP_mult_left_ennreal seq) from seq f show ?case - apply (simp add: nn_integral_monotone_convergence_SUP) + apply (simp add: nn_integral_monotone_convergence_SUP image_comp) apply (subst nn_integral_cong_AE[OF eq]) apply (subst nn_integral_monotone_convergence_SUP_AE) apply (auto simp: incseq_def le_fun_def intro!: mult_left_mono) @@ -2500,7 +2501,7 @@ next case (seq U) thus ?case - by(simp add: nn_integral_monotone_convergence_SUP SUP_mult_left_ennreal) + by(simp add: nn_integral_monotone_convergence_SUP SUP_mult_left_ennreal image_comp) qed simp end