diff -r e06852132c1d -r 64249a83bc29 src/ZF/Tools/inductive_package.ML --- a/src/ZF/Tools/inductive_package.ML Thu Nov 07 11:55:41 2019 +0100 +++ b/src/ZF/Tools/inductive_package.ML Thu Nov 07 15:16:53 2019 +0100 @@ -57,9 +57,9 @@ (*internal version, accepting terms*) fun add_inductive_i verbose (rec_tms, dom_sum) - raw_intr_specs (monos, con_defs, type_intrs, type_elims) thy = + raw_intr_specs (monos, con_defs, type_intrs, type_elims) thy0 = let - val ctxt = Proof_Context.init_global thy; + val ctxt0 = Proof_Context.init_global thy0; val intr_specs = map (apfst (apfst Binding.name_of)) raw_intr_specs; val (intr_names, intr_tms) = split_list (map fst intr_specs); @@ -70,7 +70,7 @@ val dummy = rec_hds |> forall (fn t => is_Const t orelse error ("Recursive set not previously declared as constant: " ^ - Syntax.string_of_term ctxt t)); + Syntax.string_of_term ctxt0 t)); (*Now we know they are all Consts, so get their names, type and params*) val rec_names = map (#1 o dest_Const) rec_hds @@ -81,18 +81,18 @@ error ("Base name of recursive set not an identifier: " ^ a)); local (*Checking the introduction rules*) - val intr_sets = map (#2 o Ind_Syntax.rule_concl_msg thy) intr_tms; + val intr_sets = map (#2 o Ind_Syntax.rule_concl_msg thy0) intr_tms; fun intr_ok set = case head_of set of Const(a,recT) => member (op =) rec_names a | _ => false; in val dummy = intr_sets |> forall (fn t => intr_ok t orelse error ("Conclusion of rule does not name a recursive set: " ^ - Syntax.string_of_term ctxt t)); + Syntax.string_of_term ctxt0 t)); end; val dummy = rec_params |> forall (fn t => is_Free t orelse error ("Param in recursion term not a free variable: " ^ - Syntax.string_of_term ctxt t)); + Syntax.string_of_term ctxt0 t)); (*** Construct the fixedpoint definition ***) val mk_variant = singleton (Name.variant_list (List.foldr Misc_Legacy.add_term_names [] intr_tms)); @@ -101,7 +101,7 @@ fun dest_tprop (Const(\<^const_name>\Trueprop\,_) $ P) = P | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^ - Syntax.string_of_term ctxt Q); + Syntax.string_of_term ctxt0 Q); (*Makes a disjunct from an introduction rule*) fun fp_part intr = (*quantify over rule's free vars except parameters*) @@ -142,7 +142,7 @@ If no mutual recursion then it equals the one recursive set. If mutual recursion then it differs from all the recursive sets. *) val big_rec_base_name = space_implode "_" rec_base_names; - val big_rec_name = Proof_Context.intern_const ctxt big_rec_base_name; + val big_rec_name = Proof_Context.intern_const ctxt0 big_rec_base_name; val _ = @@ -163,12 +163,12 @@ (*tracing: print the fixedpoint definition*) val dummy = if !Ind_Syntax.trace then - writeln (cat_lines (map (Syntax.string_of_term ctxt o #2) axpairs)) + writeln (cat_lines (map (Syntax.string_of_term ctxt0 o #2) axpairs)) else () (*add definitions of the inductive sets*) val (_, thy1) = - thy + thy0 |> Sign.add_path big_rec_base_name |> Global_Theory.add_defs false (map (Thm.no_attributes o apfst Binding.name) axpairs); @@ -189,13 +189,16 @@ [resolve_tac ctxt [@{thm Collect_subset} RS @{thm bnd_monoI}] 1, REPEAT (ares_tac ctxt (@{thms basic_monos} @ monos) 1)]); - val (bnd_mono, thy2) = thy1 - |> Global_Theory.add_thm ((Binding.name "bnd_mono", bnd_mono0), []) + val dom_subset0 = Drule.export_without_context (big_rec_def RS Fp.subs); - val dom_subset = Drule.export_without_context (big_rec_def RS Fp.subs); + val ([bnd_mono, dom_subset], thy2) = thy1 + |> Global_Theory.add_thms + [((Binding.name "bnd_mono", bnd_mono0), []), + ((Binding.name "dom_subset", dom_subset0), [])]; val unfold = Drule.export_without_context ([big_rec_def, bnd_mono] MRS Fp.Tarski); + (********) val dummy = writeln " Proving the introduction rules..."; @@ -337,7 +340,7 @@ (*We use a MINIMAL simpset. Even FOL_ss contains too many simpules. If the premises get simplified, then the proofs could fail.*) val min_ss = - (empty_simpset (Proof_Context.init_global thy4) + (empty_simpset ctxt4 |> Simplifier.set_mksimps (fn ctxt => map mk_eq o ZF_atomize o Variable.gen_all ctxt)) setSolver (mk_solver "minimal" (fn ctxt => resolve_tac ctxt (triv_rls @ Simplifier.prems_of ctxt) @@ -513,18 +516,18 @@ val Const (\<^const_name>\Trueprop\, _) $ (pred_var $ _) = Thm.concl_of induct0 - val induct = - CP.split_rule_var (Proof_Context.init_global thy4) + val induct0 = + CP.split_rule_var ctxt4 (pred_var, elem_type-->FOLogic.oT, induct0) |> Drule.export_without_context - and mutual_induct = CP.remove_split (Proof_Context.init_global thy4) mutual_induct_fsplit + and mutual_induct = CP.remove_split ctxt4 mutual_induct_fsplit - val ([induct', mutual_induct'], thy') = + val ([induct, mutual_induct], thy5) = thy4 - |> Global_Theory.add_thms [((Binding.name (co_prefix ^ "induct"), induct), + |> Global_Theory.add_thms [((Binding.name (co_prefix ^ "induct"), induct0), [case_names, Induct.induct_pred big_rec_name]), ((Binding.name "mutual_induct", mutual_induct), [case_names])]; - in ((induct', mutual_induct'), thy') + in ((induct, mutual_induct), thy5) end; (*of induction_rules*) val raw_induct = Drule.export_without_context ([big_rec_def, bnd_mono] MRS Fp.induct) @@ -534,28 +537,27 @@ else thy4 |> Global_Theory.add_thms [((Binding.name (co_prefix ^ "induct"), raw_induct), [])] - |> apfst (hd #> pair @{thm TrueI}) - and defs = big_rec_def :: part_rec_defs + |> apfst (hd #> pair @{thm TrueI}); - val (([dom_subset', elim'], [defs']), thy6) = + val (([cases], [defs]), thy6) = thy5 |> IndCases.declare big_rec_name make_cases |> Global_Theory.add_thms - [((Binding.name "dom_subset", dom_subset), []), - ((Binding.name "cases", elim), [case_names, Induct.cases_pred big_rec_name])] - ||>> (Global_Theory.add_thmss o map Thm.no_attributes) [(Binding.name "defs", defs)]; - val (intrs', thy7) = + [((Binding.name "cases", elim), [case_names, Induct.cases_pred big_rec_name])] + ||>> (Global_Theory.add_thmss o map Thm.no_attributes) + [(Binding.name "defs", big_rec_def :: part_rec_defs)]; + val (named_intrs, thy7) = thy6 |> Global_Theory.add_thms ((map Binding.name intr_names ~~ intrs) ~~ map #2 intr_specs) ||> Sign.parent_path; in (thy7, - {defs = defs', + {defs = defs, bnd_mono = bnd_mono, - dom_subset = dom_subset', - intrs = intrs', - elim = elim', + dom_subset = dom_subset, + intrs = named_intrs, + elim = cases, induct = induct, mutual_induct = mutual_induct}) end;