diff -r cbebe2cf77f1 -r 6666fc0b9ebc src/HOL/Number_Theory/Fib.thy --- a/src/HOL/Number_Theory/Fib.thy Tue Dec 10 15:24:17 2013 +0800 +++ b/src/HOL/Number_Theory/Fib.thy Wed Dec 11 00:17:09 2013 +0000 @@ -17,232 +17,66 @@ subsection {* Main definitions *} -class fib = - fixes fib :: "'a \ 'a" - - -(* definition for the natural numbers *) - -instantiation nat :: fib -begin - -fun fib_nat :: "nat \ nat" +fun fib :: "nat \ nat" where - "fib_nat n = - (if n = 0 then 0 else - (if n = 1 then 1 else - fib (n - 1) + fib (n - 2)))" - -instance .. - -end - -(* definition for the integers *) - -instantiation int :: fib -begin - -definition fib_int :: "int \ int" - where "fib_int n = (if n >= 0 then int (fib (nat n)) else 0)" - -instance .. - -end - - -subsection {* Set up Transfer *} - -lemma transfer_nat_int_fib: - "(x::int) >= 0 \ fib (nat x) = nat (fib x)" - unfolding fib_int_def by auto - -lemma transfer_nat_int_fib_closure: - "n >= (0::int) \ fib n >= 0" - by (auto simp add: fib_int_def) - -declare transfer_morphism_nat_int[transfer add return: - transfer_nat_int_fib transfer_nat_int_fib_closure] - -lemma transfer_int_nat_fib: "fib (int n) = int (fib n)" - unfolding fib_int_def by auto - -lemma transfer_int_nat_fib_closure: "is_nat n \ fib n >= 0" - unfolding fib_int_def by auto - -declare transfer_morphism_int_nat[transfer add return: - transfer_int_nat_fib transfer_int_nat_fib_closure] - + fib0: "fib 0 = 0" + | fib1: "fib (Suc 0) = 1" + | fib2: "fib (Suc (Suc n)) = fib (Suc n) + fib n" subsection {* Fibonacci numbers *} -lemma fib_0_nat [simp]: "fib (0::nat) = 0" - by simp - -lemma fib_0_int [simp]: "fib (0::int) = 0" - unfolding fib_int_def by simp - -lemma fib_1_nat [simp]: "fib (1::nat) = 1" - by simp - -lemma fib_Suc_0_nat [simp]: "fib (Suc 0) = Suc 0" - by simp - -lemma fib_1_int [simp]: "fib (1::int) = 1" - unfolding fib_int_def by simp - -lemma fib_reduce_nat: "(n::nat) >= 2 \ fib n = fib (n - 1) + fib (n - 2)" - by simp +lemma fib_1 [simp]: "fib (1::nat) = 1" + by (metis One_nat_def fib1) -declare fib_nat.simps [simp del] - -lemma fib_reduce_int: "(n::int) >= 2 \ fib n = fib (n - 1) + fib (n - 2)" - unfolding fib_int_def - by (auto simp add: fib_reduce_nat nat_diff_distrib) - -lemma fib_neg_int [simp]: "(n::int) < 0 \ fib n = 0" - unfolding fib_int_def by auto - -lemma fib_2_nat [simp]: "fib (2::nat) = 1" - by (subst fib_reduce_nat, auto) - -lemma fib_2_int [simp]: "fib (2::int) = 1" - by (subst fib_reduce_int, auto) - -lemma fib_plus_2_nat: "fib ((n::nat) + 2) = fib (n + 1) + fib n" - by (subst fib_reduce_nat, auto simp add: One_nat_def) -(* the need for One_nat_def is due to the natdiff_cancel_numerals - procedure *) +lemma fib_2 [simp]: "fib (2::nat) = 1" + using fib.simps(3) [of 0] + by (simp add: numeral_2_eq_2) -lemma fib_induct_nat: "P (0::nat) \ P (1::nat) \ - (!!n. P n \ P (n + 1) \ P (n + 2)) \ P n" - apply (atomize, induct n rule: nat_less_induct) - apply auto - apply (case_tac "n = 0", force) - apply (case_tac "n = 1", force) - apply (subgoal_tac "n >= 2") - apply (frule_tac x = "n - 1" in spec) - apply (drule_tac x = "n - 2" in spec) - apply (drule_tac x = "n - 2" in spec) - apply auto - apply (auto simp add: One_nat_def) (* again, natdiff_cancel *) -done +lemma fib_plus_2: "fib (n + 2) = fib (n + 1) + fib n" + by (metis Suc_eq_plus1 add_2_eq_Suc' fib.simps(3)) -lemma fib_add_nat: "fib ((n::nat) + k + 1) = fib (k + 1) * fib (n + 1) + - fib k * fib n" - apply (induct n rule: fib_induct_nat) - apply auto - apply (subst fib_reduce_nat) - apply (auto simp add: field_simps) - apply (subst (1 3 5) fib_reduce_nat) - apply (auto simp add: field_simps Suc_eq_plus1) -(* hmmm. Why doesn't "n + (1 + (1 + k))" simplify to "n + k + 2"? *) - apply (subgoal_tac "n + (k + 2) = n + (1 + (1 + k))") - apply (erule ssubst) back back - apply (erule ssubst) back - apply auto -done +lemma fib_add: "fib (Suc (n+k)) = fib (Suc k) * fib (Suc n) + fib k * fib n" + by (induct n rule: fib.induct) (auto simp add: field_simps) -lemma fib_add'_nat: "fib (n + Suc k) = - fib (Suc k) * fib (Suc n) + fib k * fib n" - using fib_add_nat by (auto simp add: One_nat_def) - - -(* transfer from nats to ints *) -lemma fib_add_int: "(n::int) >= 0 \ k >= 0 \ - fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n " - by (rule fib_add_nat [transferred]) - -lemma fib_neq_0_nat: "(n::nat) > 0 \ fib n ~= 0" - apply (induct n rule: fib_induct_nat) - apply (auto simp add: fib_plus_2_nat) - done - -lemma fib_gr_0_nat: "(n::nat) > 0 \ fib n > 0" - by (frule fib_neq_0_nat, simp) - -lemma fib_gr_0_int: "(n::int) > 0 \ fib n > 0" - unfolding fib_int_def by (simp add: fib_gr_0_nat) +lemma fib_neq_0_nat: "n > 0 \ fib n > 0" + by (induct n rule: fib.induct) (auto simp add: ) text {* \medskip Concrete Mathematics, page 278: Cassini's identity. The proof is much easier using integers, not natural numbers! *} -lemma fib_Cassini_aux_int: "fib (int n + 2) * fib (int n) - - (fib (int n + 1))\<^sup>2 = (-1)^(n + 1)" - apply (induct n) - apply (auto simp add: field_simps power2_eq_square fib_reduce_int power_add) - done - -lemma fib_Cassini_int: "n >= 0 \ fib (n + 2) * fib n - - (fib (n + 1))\<^sup>2 = (-1)^(nat n + 1)" - by (insert fib_Cassini_aux_int [of "nat n"], auto) +lemma fib_Cassini_int: "int (fib (Suc (Suc n)) * fib n) - int((fib (Suc n))\<^sup>2) = - ((-1)^n)" + by (induction n rule: fib.induct) (auto simp add: field_simps power2_eq_square power_add) -(* -lemma fib_Cassini'_int: "n >= 0 \ fib (n + 2) * fib n = - (fib (n + 1))\<^sup>2 + (-1)^(nat n + 1)" - by (frule fib_Cassini_int, simp) -*) - -lemma fib_Cassini'_int: "n >= 0 \ fib ((n::int) + 2) * fib n = - (if even n then tsub ((fib (n + 1))\<^sup>2) 1 - else (fib (n + 1))\<^sup>2 + 1)" - apply (frule fib_Cassini_int, auto simp add: pos_int_even_equiv_nat_even) - apply (subst tsub_eq) - apply (insert fib_gr_0_int [of "n + 1"], force) - apply auto - done - -lemma fib_Cassini_nat: "fib ((n::nat) + 2) * fib n = - (if even n then (fib (n + 1))\<^sup>2 - 1 - else (fib (n + 1))\<^sup>2 + 1)" - by (rule fib_Cassini'_int [transferred, of n], auto) +lemma fib_Cassini_nat: + "fib (Suc (Suc n)) * fib n = + (if even n then (fib (Suc n))\<^sup>2 - 1 else (fib (Suc n))\<^sup>2 + 1)" +using fib_Cassini_int [of n] by auto text {* \medskip Toward Law 6.111 of Concrete Mathematics *} -lemma coprime_fib_plus_1_nat: "coprime (fib (n::nat)) (fib (n + 1))" - apply (induct n rule: fib_induct_nat) +lemma coprime_fib_Suc_nat: "coprime (fib (n::nat)) (fib (Suc n))" + apply (induct n rule: fib.induct) apply auto - apply (subst (2) fib_reduce_nat) - apply (auto simp add: Suc_eq_plus1) (* again, natdiff_cancel *) - apply (subst add_commute, auto) - apply (subst gcd_commute_nat, auto simp add: field_simps) + apply (metis gcd_add1_nat nat_add_commute) done -lemma coprime_fib_Suc_nat: "coprime (fib n) (fib (Suc n))" - using coprime_fib_plus_1_nat by (simp add: One_nat_def) - -lemma coprime_fib_plus_1_int: "n >= 0 \ coprime (fib (n::int)) (fib (n + 1))" - by (erule coprime_fib_plus_1_nat [transferred]) - -lemma gcd_fib_add_nat: "gcd (fib (m::nat)) (fib (n + m)) = gcd (fib m) (fib n)" +lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)" apply (simp add: gcd_commute_nat [of "fib m"]) - apply (rule cases_nat [of _ m]) - apply simp - apply (subst add_assoc [symmetric]) - apply (simp add: fib_add_nat) + apply (cases m) + apply (auto simp add: fib_add) apply (subst gcd_commute_nat) apply (subst mult_commute) - apply (subst gcd_add_mult_nat) - apply (subst gcd_commute_nat) - apply (rule gcd_mult_cancel_nat) - apply (rule coprime_fib_plus_1_nat) + apply (metis coprime_fib_Suc_nat gcd_add_mult_nat gcd_mult_cancel_nat gcd_nat.commute) done -lemma gcd_fib_add_int [rule_format]: "m >= 0 \ n >= 0 \ - gcd (fib (m::int)) (fib (n + m)) = gcd (fib m) (fib n)" - by (erule gcd_fib_add_nat [transferred]) - -lemma gcd_fib_diff_nat: "(m::nat) \ n \ +lemma gcd_fib_diff: "m \ n \ gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" - by (simp add: gcd_fib_add_nat [symmetric, of _ "n-m"]) + by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) -lemma gcd_fib_diff_int: "0 <= (m::int) \ m \ n \ - gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" - by (simp add: gcd_fib_add_int [symmetric, of _ "n-m"]) - -lemma gcd_fib_mod_nat: "0 < (m::nat) \ +lemma gcd_fib_mod: "0 < m \ gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" proof (induct n rule: less_induct) case (less n) @@ -258,7 +92,7 @@ also have "\ = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m) also have "\ = gcd (fib m) (fib n)" - by (simp add: gcd_fib_diff_nat `m \ n`) + by (simp add: gcd_fib_diff `m \ n`) finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" . next case False @@ -267,38 +101,13 @@ qed qed -lemma gcd_fib_mod_int: - assumes "0 < (m::int)" and "0 <= n" - shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" - apply (rule gcd_fib_mod_nat [transferred]) - using assms apply auto - done - -lemma fib_gcd_nat: "fib (gcd (m::nat) n) = gcd (fib m) (fib n)" +lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" -- {* Law 6.111 *} - apply (induct m n rule: gcd_nat_induct) - apply (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod_nat) - done - -lemma fib_gcd_int: "m >= 0 \ n >= 0 \ - fib (gcd (m::int) n) = gcd (fib m) (fib n)" - by (erule fib_gcd_nat [transferred]) - -lemma atMost_plus_one_nat: "{..(k::nat) + 1} = insert (k + 1) {..k}" - by auto + by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod) theorem fib_mult_eq_setsum_nat: - "fib ((n::nat) + 1) * fib n = (\k \ {..n}. fib k * fib k)" - apply (induct n) - apply (auto simp add: atMost_plus_one_nat fib_plus_2_nat field_simps) - done - -theorem fib_mult_eq_setsum'_nat: "fib (Suc n) * fib n = (\k \ {..n}. fib k * fib k)" - using fib_mult_eq_setsum_nat by (simp add: One_nat_def) - -theorem fib_mult_eq_setsum_int [rule_format]: - "n >= 0 \ fib ((n::int) + 1) * fib n = (\k \ {0..n}. fib k * fib k)" - by (erule fib_mult_eq_setsum_nat [transferred]) + by (induct n rule: nat.induct) (auto simp add: field_simps) end +