diff -r 471b576aad25 -r 67268bb40b21 src/HOL/Groebner_Basis.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Groebner_Basis.thy Tue Jun 05 16:26:04 2007 +0200 @@ -0,0 +1,416 @@ +(* Title: HOL/Groebner_Basis.thy + ID: $Id$ + Author: Amine Chaieb, TU Muenchen +*) + +header {* Semiring normalization and Groebner Bases *} + +theory Groebner_Basis +imports NatBin +uses + "Tools/Groebner_Basis/misc.ML" + "Tools/Groebner_Basis/normalizer_data.ML" + ("Tools/Groebner_Basis/normalizer.ML") +begin + +subsection {* Semiring normalization *} + +setup NormalizerData.setup + + +locale semiring = + fixes add mul pwr r0 r1 + assumes add_a:"(add x (add y z) = add (add x y) z)" + and add_c: "add x y = add y x" and add_0:"add r0 x = x" + and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x" + and mul_1:"mul r1 x = x" and mul_0:"mul r0 x = r0" + and mul_d:"mul x (add y z) = add (mul x y) (mul x z)" + and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)" +begin + +lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)" +proof (induct p) + case 0 + then show ?case by (auto simp add: pwr_0 mul_1) +next + case Suc + from this [symmetric] show ?case + by (auto simp add: pwr_Suc mul_1 mul_a) +qed + +lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)" +proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1) + fix q x y + assume "\x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)" + have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))" + by (simp add: mul_a) + also have "\ = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c) + also have "\ = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a) + finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) = + mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c) +qed + +lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)" +proof (induct p arbitrary: q) + case 0 + show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto +next + case Suc + thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc) +qed + + +subsubsection {* Declaring the abstract theory *} + +lemma semiring_ops: + includes meta_term_syntax + shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)" + and "TERM r0" and "TERM r1" + by rule+ + +lemma semiring_rules: + "add (mul a m) (mul b m) = mul (add a b) m" + "add (mul a m) m = mul (add a r1) m" + "add m (mul a m) = mul (add a r1) m" + "add m m = mul (add r1 r1) m" + "add r0 a = a" + "add a r0 = a" + "mul a b = mul b a" + "mul (add a b) c = add (mul a c) (mul b c)" + "mul r0 a = r0" + "mul a r0 = r0" + "mul r1 a = a" + "mul a r1 = a" + "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" + "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" + "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" + "mul (mul lx ly) rx = mul (mul lx rx) ly" + "mul (mul lx ly) rx = mul lx (mul ly rx)" + "mul lx (mul rx ry) = mul (mul lx rx) ry" + "mul lx (mul rx ry) = mul rx (mul lx ry)" + "add (add a b) (add c d) = add (add a c) (add b d)" + "add (add a b) c = add a (add b c)" + "add a (add c d) = add c (add a d)" + "add (add a b) c = add (add a c) b" + "add a c = add c a" + "add a (add c d) = add (add a c) d" + "mul (pwr x p) (pwr x q) = pwr x (p + q)" + "mul x (pwr x q) = pwr x (Suc q)" + "mul (pwr x q) x = pwr x (Suc q)" + "mul x x = pwr x 2" + "pwr (mul x y) q = mul (pwr x q) (pwr y q)" + "pwr (pwr x p) q = pwr x (p * q)" + "pwr x 0 = r1" + "pwr x 1 = x" + "mul x (add y z) = add (mul x y) (mul x z)" + "pwr x (Suc q) = mul x (pwr x q)" + "pwr x (2*n) = mul (pwr x n) (pwr x n)" + "pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))" +proof - + show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp +next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp +next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp +next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp +next show "add r0 a = a" using add_0 by simp +next show "add a r0 = a" using add_0 add_c by simp +next show "mul a b = mul b a" using mul_c by simp +next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp +next show "mul r0 a = r0" using mul_0 by simp +next show "mul a r0 = r0" using mul_0 mul_c by simp +next show "mul r1 a = a" using mul_1 by simp +next show "mul a r1 = a" using mul_1 mul_c by simp +next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" + using mul_c mul_a by simp +next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" + using mul_a by simp +next + have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c) + also have "\ = mul rx (mul ry (mul lx ly))" using mul_a by simp + finally + show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" + using mul_c by simp +next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp +next + show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a) +next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a ) +next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c) +next show "add (add a b) (add c d) = add (add a c) (add b d)" + using add_c add_a by simp +next show "add (add a b) c = add a (add b c)" using add_a by simp +next show "add a (add c d) = add c (add a d)" + apply (simp add: add_a) by (simp only: add_c) +next show "add (add a b) c = add (add a c) b" using add_a add_c by simp +next show "add a c = add c a" by (rule add_c) +next show "add a (add c d) = add (add a c) d" using add_a by simp +next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr) +next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp +next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp +next show "mul x x = pwr x 2" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) +next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul) +next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr) +next show "pwr x 0 = r1" using pwr_0 . +next show "pwr x 1 = x" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) +next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp +next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp +next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number mul_pwr) +next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))" + by (simp add: nat_number pwr_Suc mul_pwr) +qed + + +lemma "axioms" [normalizer + semiring ops: semiring_ops + semiring rules: semiring_rules]: + "semiring add mul pwr r0 r1" . + +end + +interpretation class_semiring: semiring + ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"] + by unfold_locales (auto simp add: ring_eq_simps power_Suc) + +lemmas nat_arith = + add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of + +lemma not_iszero_Numeral1: "\ iszero (Numeral1::'a::number_ring)" + by (simp add: numeral_1_eq_1) +lemmas comp_arith = Let_def arith_simps nat_arith rel_simps if_False + if_True add_0 add_Suc add_number_of_left mult_number_of_left + numeral_1_eq_1[symmetric] Suc_eq_add_numeral_1 + numeral_0_eq_0[symmetric] numerals[symmetric] not_iszero_1 + iszero_number_of_1 iszero_number_of_0 nonzero_number_of_Min + iszero_number_of_Pls iszero_0 not_iszero_Numeral1 + +lemmas semiring_norm = comp_arith + +ML {* + fun numeral_is_const ct = + can HOLogic.dest_number (Thm.term_of ct); + + val numeral_conv = + Conv.then_conv (Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}), + Simplifier.rewrite (HOL_basic_ss addsimps + [@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)})); +*} + +ML {* + fun int_of_rat x = + (case Rat.quotient_of_rat x of (i, 1) => i + | _ => error "int_of_rat: bad int") +*} + +declaration {* + NormalizerData.funs @{thm class_semiring.axioms} + {is_const = fn phi => numeral_is_const, + dest_const = fn phi => fn ct => + Rat.rat_of_int (snd + (HOLogic.dest_number (Thm.term_of ct) + handle TERM _ => error "ring_dest_const")), + mk_const = fn phi => fn cT => fn x => + Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)), + conv = fn phi => numeral_conv} +*} + + +locale ring = semiring + + fixes sub :: "'a \ 'a \ 'a" + and neg :: "'a \ 'a" + assumes neg_mul: "neg x = mul (neg r1) x" + and sub_add: "sub x y = add x (neg y)" +begin + +lemma ring_ops: + includes meta_term_syntax + shows "TERM (sub x y)" and "TERM (neg x)" . + +lemmas ring_rules = neg_mul sub_add + +lemma "axioms" [normalizer + semiring ops: semiring_ops + semiring rules: semiring_rules + ring ops: ring_ops + ring rules: ring_rules]: + "ring add mul pwr r0 r1 sub neg" . + +end + + +interpretation class_ring: ring ["op +" "op *" "op ^" + "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"] + by unfold_locales simp_all + + +declaration {* + NormalizerData.funs @{thm class_ring.axioms} + {is_const = fn phi => numeral_is_const, + dest_const = fn phi => fn ct => + Rat.rat_of_int (snd + (HOLogic.dest_number (Thm.term_of ct) + handle TERM _ => error "ring_dest_const")), + mk_const = fn phi => fn cT => fn x => + Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)), + conv = fn phi => numeral_conv} +*} + +use "Tools/Groebner_Basis/normalizer.ML" + +method_setup sring_norm = {* + Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (Normalizer.semiring_normalize_tac ctxt)) +*} "Semiring_normalizer" + + +subsection {* Gröbner Bases *} + +locale semiringb = semiring + + assumes add_cancel: "add (x::'a) y = add x z \ y = z" + and add_mul_solve: "add (mul w y) (mul x z) = + add (mul w z) (mul x y) \ w = x \ y = z" +begin + +lemma noteq_reduce: "a \ b \ c \ d \ add (mul a c) (mul b d) \ add (mul a d) (mul b c)" +proof- + have "a \ b \ c \ d \ \ (a = b \ c = d)" by simp + also have "\ \ add (mul a c) (mul b d) \ add (mul a d) (mul b c)" + using add_mul_solve by blast + finally show "a \ b \ c \ d \ add (mul a c) (mul b d) \ add (mul a d) (mul b c)" + by simp +qed + +lemma add_scale_eq_noteq: "\r \ r0 ; (a = b) \ ~(c = d)\ + \ add a (mul r c) \ add b (mul r d)" +proof(clarify) + assume nz: "r\ r0" and cnd: "c\d" + and eq: "add b (mul r c) = add b (mul r d)" + hence "mul r c = mul r d" using cnd add_cancel by simp + hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)" + using mul_0 add_cancel by simp + thus "False" using add_mul_solve nz cnd by simp +qed + +declare "axioms" [normalizer del] + +lemma "axioms" [normalizer + semiring ops: semiring_ops + semiring rules: semiring_rules + idom rules: noteq_reduce add_scale_eq_noteq]: + "semiringb add mul pwr r0 r1" . + +end + +locale ringb = semiringb + ring +begin + +declare "axioms" [normalizer del] + +lemma "axioms" [normalizer + semiring ops: semiring_ops + semiring rules: semiring_rules + ring ops: ring_ops + ring rules: ring_rules + idom rules: noteq_reduce add_scale_eq_noteq]: + "ringb add mul pwr r0 r1 sub neg" . + +end + +lemma no_zero_divirors_neq0: + assumes az: "(a::'a::no_zero_divisors) \ 0" + and ab: "a*b = 0" shows "b = 0" +proof - + { assume bz: "b \ 0" + from no_zero_divisors [OF az bz] ab have False by blast } + thus "b = 0" by blast +qed + +interpretation class_ringb: ringb + ["op +" "op *" "op ^" "0::'a::{idom,recpower,number_ring}" "1" "op -" "uminus"] +proof(unfold_locales, simp add: ring_eq_simps power_Suc, auto) + fix w x y z ::"'a::{idom,recpower,number_ring}" + assume p: "w * y + x * z = w * z + x * y" and ynz: "y \ z" + hence ynz': "y - z \ 0" by simp + from p have "w * y + x* z - w*z - x*y = 0" by simp + hence "w* (y - z) - x * (y - z) = 0" by (simp add: ring_eq_simps) + hence "(y - z) * (w - x) = 0" by (simp add: ring_eq_simps) + with no_zero_divirors_neq0 [OF ynz'] + have "w - x = 0" by blast + thus "w = x" by simp +qed + + +declaration {* + NormalizerData.funs @{thm class_ringb.axioms} + {is_const = fn phi => numeral_is_const, + dest_const = fn phi => fn ct => + Rat.rat_of_int (snd + (HOLogic.dest_number (Thm.term_of ct) + handle TERM _ => error "ring_dest_const")), + mk_const = fn phi => fn cT => fn x => + Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)), + conv = fn phi => numeral_conv} +*} + + +interpretation natgb: semiringb + ["op +" "op *" "op ^" "0::nat" "1"] +proof (unfold_locales, simp add: ring_eq_simps power_Suc) + fix w x y z ::"nat" + { assume p: "w * y + x * z = w * z + x * y" and ynz: "y \ z" + hence "y < z \ y > z" by arith + moreover { + assume lt:"y k. z = y + k \ k > 0" by (rule_tac x="z - y" in exI, auto) + then obtain k where kp: "k>0" and yz:"z = y + k" by blast + from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz ring_eq_simps) + hence "x*k = w*k" by simp + hence "w = x" using kp by (simp add: mult_cancel2) } + moreover { + assume lt: "y >z" hence "\k. y = z + k \ k>0" by (rule_tac x="y - z" in exI, auto) + then obtain k where kp: "k>0" and yz:"y = z + k" by blast + from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz ring_eq_simps) + hence "w*k = x*k" by simp + hence "w = x" using kp by (simp add: mult_cancel2)} + ultimately have "w=x" by blast } + thus "(w * y + x * z = w * z + x * y) = (w = x \ y = z)" by auto +qed + +declaration {* + NormalizerData.funs @{thm natgb.axioms} + {is_const = fn phi => numeral_is_const, + dest_const = fn phi => fn ct => + Rat.rat_of_int (snd + (HOLogic.dest_number (Thm.term_of ct) + handle TERM _ => error "ring_dest_const")), + mk_const = fn phi => fn cT => fn x => + Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)), + conv = fn phi => numeral_conv} +*} + + +lemmas bool_simps = simp_thms(1-34) +lemma dnf: + "(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))" + "(P \ Q) = (Q \ P)" "(P \ Q) = (Q \ P)" + by blast+ + +lemmas weak_dnf_simps = dnf bool_simps + +lemma nnf_simps: + "(\(P \ Q)) = (\P \ \Q)" "(\(P \ Q)) = (\P \ \Q)" "(P \ Q) = (\P \ Q)" + "(P = Q) = ((P \ Q) \ (\P \ \ Q))" "(\ \(P)) = P" + by blast+ + +lemma PFalse: + "P \ False \ \ P" + "\ P \ (P \ False)" + by auto + +use "Tools/Groebner_Basis/groebner.ML" + +ML {* + fun algebra_tac ctxt i = ObjectLogic.full_atomize_tac i THEN (fn st => + rtac (Groebner.ring_conv ctxt (Thm.dest_arg (nth (cprems_of st) (i - 1)))) i st); +*} + +method_setup algebra = {* + Method.ctxt_args (Method.SIMPLE_METHOD' o algebra_tac) +*} "" + +end