diff -r a6cd18af8bf9 -r 685fb01256af src/HOL/Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Thu Sep 15 22:41:05 2016 +0200 +++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Fri Sep 16 13:56:51 2016 +0200 @@ -1,7 +1,7 @@ section \Instantiates the finite Cartesian product of Euclidean spaces as a Euclidean space.\ theory Cartesian_Euclidean_Space -imports Finite_Cartesian_Product Henstock_Kurzweil_Integration +imports Finite_Cartesian_Product Derivative (* Henstock_Kurzweil_Integration *) begin lemma subspace_special_hyperplane: "subspace {x. x $ k = 0}" @@ -927,7 +927,6 @@ unfolding dot_matrix_product transpose_columnvector[symmetric] dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc .. - lemma infnorm_cart:"infnorm (x::real^'n) = Sup {\x$i\ |i. i\UNIV}" by (simp add: infnorm_def inner_axis Basis_vec_def) (metis (lifting) inner_axis real_inner_1_right) @@ -1409,12 +1408,6 @@ apply (rule bounded_linearI[where K=1]) using component_le_norm_cart[of _ k] unfolding real_norm_def by auto -lemma integral_component_eq_cart[simp]: - fixes f :: "'n::euclidean_space \ real^'m" - assumes "f integrable_on s" - shows "integral s (\x. f x $ k) = integral s f $ k" - using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] . - lemma interval_split_cart: "{a..b::real^'n} \ {x. x$k \ c} = {a .. (\ i. if i = k then min (b$k) c else b$i)}" "cbox a b \ {x. x$k \ c} = {(\ i. if i = k then max (a$k) c else a$i) .. b}"