diff -r a6cd18af8bf9 -r 685fb01256af src/HOL/Probability/Levy.thy --- a/src/HOL/Probability/Levy.thy Thu Sep 15 22:41:05 2016 +0200 +++ b/src/HOL/Probability/Levy.thy Fri Sep 16 13:56:51 2016 +0200 @@ -136,9 +136,9 @@ have "(CLBINT t=-T..T. ?F t * \ t) = (CLBINT t. (CLINT x | M. ?F t * iexp (t * x) * indicator {-T<..T \ 0\ unfolding \_def char_def interval_lebesgue_integral_def - by (auto split: split_indicator intro!: integral_cong) + by (auto split: split_indicator intro!: Bochner_Integration.integral_cong) also have "\ = (CLBINT t. (CLINT x | M. ?f' (t, x)))" - by (auto intro!: integral_cong simp: field_simps exp_diff exp_minus split: split_indicator) + by (auto intro!: Bochner_Integration.integral_cong simp: field_simps exp_diff exp_minus split: split_indicator) also have "\ = (CLINT x | M. (CLBINT t. ?f' (t, x)))" proof (intro P.Fubini_integral [symmetric] integrableI_bounded_set [where B="b - a"]) show "emeasure (lborel \\<^sub>M M) ({- T<.. space M) < \" @@ -151,7 +151,7 @@ qed (auto split: split_indicator split_indicator_asm) also have "\ = (CLINT x | M. (complex_of_real (2 * (sgn (x - a) * Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b))))))" - using main_eq by (intro integral_cong, auto) + using main_eq by (intro Bochner_Integration.integral_cong, auto) also have "\ = complex_of_real (LINT x | M. (2 * (sgn (x - a) * Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b)))))" by (rule integral_complex_of_real) @@ -336,11 +336,11 @@ (CLBINT t:{-u..u}. (CLINT x | M n. 1 - iexp (t * x)))" unfolding char_def by (rule set_lebesgue_integral_cong, auto simp del: of_real_mult) also have "\ = (CLBINT t. (CLINT x | M n. indicator {-u..u} t *\<^sub>R (1 - iexp (t * x))))" - by (rule integral_cong) (auto split: split_indicator) + by (rule Bochner_Integration.integral_cong) (auto split: split_indicator) also have "\ = (CLINT x | M n. (CLBINT t:{-u..u}. 1 - iexp (t * x)))" using Mn3 by (subst P.Fubini_integral) (auto simp: indicator_times split_beta') also have "\ = (CLINT x | M n. (if x = 0 then 0 else 2 * (u - sin (u * x) / x)))" - using \u > 0\ by (intro integral_cong, auto simp add: * simp del: of_real_mult) + using \u > 0\ by (intro Bochner_Integration.integral_cong, auto simp add: * simp del: of_real_mult) also have "\ = (LINT x | M n. (if x = 0 then 0 else 2 * (u - sin (u * x) / x)))" by (rule integral_complex_of_real) finally have "Re (CLBINT t:{-u..u}. 1 - char (M n) t) =