diff -r 94427db32392 -r 688f6ff859e1 src/HOL/Probability/Sigma_Algebra.thy --- a/src/HOL/Probability/Sigma_Algebra.thy Wed Dec 01 20:12:53 2010 +0100 +++ b/src/HOL/Probability/Sigma_Algebra.thy Wed Dec 01 21:03:02 2010 +0100 @@ -403,6 +403,12 @@ shows "sets (sigma N) \ sets M" by (unfold assms sets_sigma, rule sigma_sets_subset, rule assms) +lemma in_sigma[intro, simp]: "A \ sets M \ A \ sets (sigma M)" + unfolding sigma_def by (auto intro!: sigma_sets.Basic) + +lemma (in sigma_algebra) sigma_eq[simp]: "sigma M = M" + unfolding sigma_def sigma_sets_eq by simp + section {* Measurable functions *} definition @@ -865,6 +871,22 @@ qed qed +lemma vimage_algebra_sigma: + assumes E: "sets E \ Pow (space E)" + and f: "f \ space F \ space E" + and "\A. A \ sets F \ A \ (\X. f -` X \ space F) ` sets E" + and "\A. A \ sets E \ f -` A \ space F \ sets F" + shows "sigma_algebra.vimage_algebra (sigma E) (space F) f = sigma F" +proof - + interpret sigma_algebra "sigma E" + using assms by (intro sigma_algebra_sigma) auto + have eq: "sets F = (\X. f -` X \ space F) ` sets E" + using assms by auto + show "vimage_algebra (space F) f = sigma F" + unfolding vimage_algebra_def using assms + by (simp add: sigma_def eq sigma_sets_vimage) +qed + section {* Conditional space *} definition (in algebra)