diff -r 352213b24ced -r 68ce5760c585 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Wed Apr 28 15:07:03 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Wed Apr 28 16:11:07 2010 -0700 @@ -2815,563 +2815,4 @@ also have "\ < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps) finally show "setsum (op $ ?a) ?D < 1" by auto qed qed -subsection {* Paths. *} - -definition - path :: "(real \ 'a::topological_space) \ bool" - where "path g \ continuous_on {0 .. 1} g" - -definition - pathstart :: "(real \ 'a::topological_space) \ 'a" - where "pathstart g = g 0" - -definition - pathfinish :: "(real \ 'a::topological_space) \ 'a" - where "pathfinish g = g 1" - -definition - path_image :: "(real \ 'a::topological_space) \ 'a set" - where "path_image g = g ` {0 .. 1}" - -definition - reversepath :: "(real \ 'a::topological_space) \ (real \ 'a)" - where "reversepath g = (\x. g(1 - x))" - -definition - joinpaths :: "(real \ 'a::topological_space) \ (real \ 'a) \ (real \ 'a)" - (infixr "+++" 75) - where "g1 +++ g2 = (\x. if x \ 1/2 then g1 (2 * x) else g2 (2 * x - 1))" - -definition - simple_path :: "(real \ 'a::topological_space) \ bool" - where "simple_path g \ - (\x\{0..1}. \y\{0..1}. g x = g y \ x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0)" - -definition - injective_path :: "(real \ 'a::topological_space) \ bool" - where "injective_path g \ (\x\{0..1}. \y\{0..1}. g x = g y \ x = y)" - -subsection {* Some lemmas about these concepts. *} - -lemma injective_imp_simple_path: - "injective_path g \ simple_path g" - unfolding injective_path_def simple_path_def by auto - -lemma path_image_nonempty: "path_image g \ {}" - unfolding path_image_def image_is_empty interval_eq_empty by auto - -lemma pathstart_in_path_image[intro]: "(pathstart g) \ path_image g" - unfolding pathstart_def path_image_def by auto - -lemma pathfinish_in_path_image[intro]: "(pathfinish g) \ path_image g" - unfolding pathfinish_def path_image_def by auto - -lemma connected_path_image[intro]: "path g \ connected(path_image g)" - unfolding path_def path_image_def - apply (erule connected_continuous_image) - by(rule convex_connected, rule convex_real_interval) - -lemma compact_path_image[intro]: "path g \ compact(path_image g)" - unfolding path_def path_image_def - by (erule compact_continuous_image, rule compact_real_interval) - -lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g" - unfolding reversepath_def by auto - -lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g" - unfolding pathstart_def reversepath_def pathfinish_def by auto - -lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g" - unfolding pathstart_def reversepath_def pathfinish_def by auto - -lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1" - unfolding pathstart_def joinpaths_def pathfinish_def by auto - -lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" - unfolding pathstart_def joinpaths_def pathfinish_def by auto - -lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof- - have *:"\g. path_image(reversepath g) \ path_image g" - unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE) - apply(rule_tac x="1 - xa" in bexI) by auto - show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed - -lemma path_reversepath[simp]: "path(reversepath g) \ path g" proof- - have *:"\g. path g \ path(reversepath g)" unfolding path_def reversepath_def - apply(rule continuous_on_compose[unfolded o_def, of _ "\x. 1 - x"]) - apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id) - apply(rule continuous_on_subset[of "{0..1}"], assumption) by auto - show ?thesis using *[of "reversepath g"] *[of g] unfolding reversepath_reversepath by (rule iffI) qed - -lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath - -lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \ path g1 \ path g2" - unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof- - assume as:"continuous_on {0..1} (g1 +++ g2)" - have *:"g1 = (\x. g1 (2 *\<^sub>R x)) \ (\x. (1/2) *\<^sub>R x)" - "g2 = (\x. g2 (2 *\<^sub>R x - 1)) \ (\x. (1/2) *\<^sub>R (x + 1))" - unfolding o_def by (auto simp add: add_divide_distrib) - have "op *\<^sub>R (1 / 2) ` {0::real..1} \ {0..1}" "(\x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real)..1} \ {0..1}" - by auto - thus "continuous_on {0..1} g1 \ continuous_on {0..1} g2" apply -apply rule - apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose) - apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer - apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3 - apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption) - apply(rule) defer apply rule proof- - fix x assume "x \ op *\<^sub>R (1 / 2) ` {0::real..1}" - hence "x \ 1 / 2" unfolding image_iff by auto - thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next - fix x assume "x \ (\x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real..1}" - hence "x \ 1 / 2" unfolding image_iff by auto - thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "x = 1 / 2") - case True hence "x = (1/2) *\<^sub>R 1" unfolding Cart_eq by auto - thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by (auto simp add: mult_ac) - qed (auto simp add:le_less joinpaths_def) qed -next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2" - have *:"{0 .. 1::real} = {0.. (1/2)*\<^sub>R 1} \ {(1/2) *\<^sub>R 1 .. 1}" by auto - have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real}" apply(rule set_ext, rule) unfolding image_iff - defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by auto - have ***:"(\x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real}" - apply (auto simp add: image_def) - apply (rule_tac x="(x + 1) / 2" in bexI) - apply (auto simp add: add_divide_distrib) - done - show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply (rule closed_real_atLeastAtMost)+ proof- - show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\x. g1 (2 *\<^sub>R x)"]) defer - unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id) - unfolding ** apply(rule as(1)) unfolding joinpaths_def by auto next - show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \ (\x. 2 *\<^sub>R x - 1)"]) defer - apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const) - unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def] - by (auto simp add: mult_ac) qed qed - -lemma path_image_join_subset: "path_image(g1 +++ g2) \ (path_image g1 \ path_image g2)" proof - fix x assume "x \ path_image (g1 +++ g2)" - then obtain y where y:"y\{0..1}" "x = (if y \ 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))" - unfolding path_image_def image_iff joinpaths_def by auto - thus "x \ path_image g1 \ path_image g2" apply(cases "y \ 1/2") - apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1) - by(auto intro!: imageI) qed - -lemma subset_path_image_join: - assumes "path_image g1 \ s" "path_image g2 \ s" shows "path_image(g1 +++ g2) \ s" - using path_image_join_subset[of g1 g2] and assms by auto - -lemma path_image_join: - assumes "path g1" "path g2" "pathfinish g1 = pathstart g2" - shows "path_image(g1 +++ g2) = (path_image g1) \ (path_image g2)" -apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE) - fix x assume "x \ path_image g1" - then obtain y where y:"y\{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto - thus "x \ path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff - apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by auto next - fix x assume "x \ path_image g2" - then obtain y where y:"y\{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto - then show "x \ path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff - apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def] - by (auto simp add: add_divide_distrib) qed - -lemma not_in_path_image_join: - assumes "x \ path_image g1" "x \ path_image g2" shows "x \ path_image(g1 +++ g2)" - using assms and path_image_join_subset[of g1 g2] by auto - -lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)" - using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+ - apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE) - by auto - -lemma simple_path_join_loop: - assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1" - "(path_image g1 \ path_image g2) \ {pathstart g1,pathstart g2}" - shows "simple_path(g1 +++ g2)" -unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2" - note inj = assms(1,2)[unfolded injective_path_def, rule_format] - fix x y::"real" assume xy:"x \ {0..1}" "y \ {0..1}" "?g x = ?g y" - show "x = y \ x = 0 \ y = 1 \ x = 1 \ y = 0" proof(case_tac "x \ 1/2",case_tac[!] "y \ 1/2", unfold not_le) - assume as:"x \ 1 / 2" "y \ 1 / 2" - hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def by auto - moreover have "2 *\<^sub>R x \ {0..1}" "2 *\<^sub>R y \ {0..1}" using xy(1,2) as - by auto - ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto - next assume as:"x > 1 / 2" "y > 1 / 2" - hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def by auto - moreover have "2 *\<^sub>R x - 1 \ {0..1}" "2 *\<^sub>R y - 1 \ {0..1}" using xy(1,2) as by auto - ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto - next assume as:"x \ 1 / 2" "y > 1 / 2" - hence "?g x \ path_image g1" "?g y \ path_image g2" unfolding path_image_def joinpaths_def - using xy(1,2) by auto - moreover have "?g y \ pathstart g2" using as(2) unfolding pathstart_def joinpaths_def - using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2) - by (auto simp add: field_simps) - ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto - hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1) - using inj(1)[of "2 *\<^sub>R x" 0] by auto - moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym] - unfolding joinpaths_def pathfinish_def using as(2) and xy(2) - using inj(2)[of "2 *\<^sub>R y - 1" 1] by auto - ultimately show ?thesis by auto - next assume as:"x > 1 / 2" "y \ 1 / 2" - hence "?g x \ path_image g2" "?g y \ path_image g1" unfolding path_image_def joinpaths_def - using xy(1,2) by auto - moreover have "?g x \ pathstart g2" using as(1) unfolding pathstart_def joinpaths_def - using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1) - by (auto simp add: field_simps) - ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto - hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2) - using inj(1)[of "2 *\<^sub>R y" 0] by auto - moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym] - unfolding joinpaths_def pathfinish_def using as(1) and xy(1) - using inj(2)[of "2 *\<^sub>R x - 1" 1] by auto - ultimately show ?thesis by auto qed qed - -lemma injective_path_join: - assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2" - "(path_image g1 \ path_image g2) \ {pathstart g2}" - shows "injective_path(g1 +++ g2)" - unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2" - note inj = assms(1,2)[unfolded injective_path_def, rule_format] - fix x y assume xy:"x \ {0..1}" "y \ {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y" - show "x = y" proof(cases "x \ 1/2", case_tac[!] "y \ 1/2", unfold not_le) - assume "x \ 1 / 2" "y \ 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy - unfolding joinpaths_def by auto - next assume "x > 1 / 2" "y > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy - unfolding joinpaths_def by auto - next assume as:"x \ 1 / 2" "y > 1 / 2" - hence "?g x \ path_image g1" "?g y \ path_image g2" unfolding path_image_def joinpaths_def - using xy(1,2) by auto - hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto - thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2) - unfolding pathstart_def pathfinish_def joinpaths_def - by auto - next assume as:"x > 1 / 2" "y \ 1 / 2" - hence "?g x \ path_image g2" "?g y \ path_image g1" unfolding path_image_def joinpaths_def - using xy(1,2) by auto - hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto - thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2) - unfolding pathstart_def pathfinish_def joinpaths_def - by auto qed qed - -lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join - -subsection {* Reparametrizing a closed curve to start at some chosen point. *} - -definition "shiftpath a (f::real \ 'a::topological_space) = - (\x. if (a + x) \ 1 then f(a + x) else f(a + x - 1))" - -lemma pathstart_shiftpath: "a \ 1 \ pathstart(shiftpath a g) = g a" - unfolding pathstart_def shiftpath_def by auto - -lemma pathfinish_shiftpath: assumes "0 \ a" "pathfinish g = pathstart g" - shows "pathfinish(shiftpath a g) = g a" - using assms unfolding pathstart_def pathfinish_def shiftpath_def - by auto - -lemma endpoints_shiftpath: - assumes "pathfinish g = pathstart g" "a \ {0 .. 1}" - shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a" - using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath) - -lemma closed_shiftpath: - assumes "pathfinish g = pathstart g" "a \ {0..1}" - shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)" - using endpoints_shiftpath[OF assms] by auto - -lemma path_shiftpath: - assumes "path g" "pathfinish g = pathstart g" "a \ {0..1}" - shows "path(shiftpath a g)" proof- - have *:"{0 .. 1} = {0 .. 1-a} \ {1-a .. 1}" using assms(3) by auto - have **:"\x. x + a = 1 \ g (x + a - 1) = g (x + a)" - using assms(2)[unfolded pathfinish_def pathstart_def] by auto - show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union) - apply(rule closed_real_atLeastAtMost)+ apply(rule continuous_on_eq[of _ "g \ (\x. a + x)"]) prefer 3 - apply(rule continuous_on_eq[of _ "g \ (\x. a - 1 + x)"]) defer prefer 3 - apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+ - apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]]) - using assms(3) and ** by(auto, auto simp add: field_simps) qed - -lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \ {0..1}" "x \ {0..1}" - shows "shiftpath (1 - a) (shiftpath a g) x = g x" - using assms unfolding pathfinish_def pathstart_def shiftpath_def by auto - -lemma path_image_shiftpath: - assumes "a \ {0..1}" "pathfinish g = pathstart g" - shows "path_image(shiftpath a g) = path_image g" proof- - { fix x assume as:"g 1 = g 0" "x \ {0..1::real}" " \y\{0..1} \ {x. \ a + x \ 1}. g x \ g (a + y - 1)" - hence "\y\{0..1} \ {x. a + x \ 1}. g x = g (a + y)" proof(cases "a \ x") - case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI) - using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1) - by(auto simp add: field_simps atomize_not) next - case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI) - by(auto simp add: field_simps) qed } - thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def - by(auto simp add: image_iff) qed - -subsection {* Special case of straight-line paths. *} - -definition - linepath :: "'a::real_normed_vector \ 'a \ real \ 'a" where - "linepath a b = (\x. (1 - x) *\<^sub>R a + x *\<^sub>R b)" - -lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a" - unfolding pathstart_def linepath_def by auto - -lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b" - unfolding pathfinish_def linepath_def by auto - -lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" - unfolding linepath_def by (intro continuous_intros) - -lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)" - using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on) - -lemma path_linepath[intro]: "path(linepath a b)" - unfolding path_def by(rule continuous_on_linepath) - -lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)" - unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer - unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI) - by auto - -lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a" - unfolding reversepath_def linepath_def by(rule ext, auto) - -lemma injective_path_linepath: - assumes "a \ b" shows "injective_path(linepath a b)" -proof - - { fix x y :: "real" - assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b" - hence "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps) - with assms have "x = y" by simp } - thus ?thesis unfolding injective_path_def linepath_def by(auto simp add: algebra_simps) qed - -lemma simple_path_linepath[intro]: "a \ b \ simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath) - -subsection {* Bounding a point away from a path. *} - -lemma not_on_path_ball: - fixes g :: "real \ 'a::heine_borel" - assumes "path g" "z \ path_image g" - shows "\e>0. ball z e \ (path_image g) = {}" proof- - obtain a where "a\path_image g" "\y\path_image g. dist z a \ dist z y" - using distance_attains_inf[OF _ path_image_nonempty, of g z] - using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto - thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed - -lemma not_on_path_cball: - fixes g :: "real \ 'a::heine_borel" - assumes "path g" "z \ path_image g" - shows "\e>0. cball z e \ (path_image g) = {}" proof- - obtain e where "ball z e \ path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto - moreover have "cball z (e/2) \ ball z e" using `e>0` by auto - ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed - -subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *} - -definition "path_component s x y \ (\g. path g \ path_image g \ s \ pathstart g = x \ pathfinish g = y)" - -lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def - -lemma path_component_mem: assumes "path_component s x y" shows "x \ s" "y \ s" - using assms unfolding path_defs by auto - -lemma path_component_refl: assumes "x \ s" shows "path_component s x x" - unfolding path_defs apply(rule_tac x="\u. x" in exI) using assms - by(auto intro!:continuous_on_intros) - -lemma path_component_refl_eq: "path_component s x x \ x \ s" - by(auto intro!: path_component_mem path_component_refl) - -lemma path_component_sym: "path_component s x y \ path_component s y x" - using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI) - by auto - -lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z" - using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join) - -lemma path_component_of_subset: "s \ t \ path_component s x y \ path_component t x y" - unfolding path_component_def by auto - -subsection {* Can also consider it as a set, as the name suggests. *} - -lemma path_component_set: "path_component s x = { y. (\g. path g \ path_image g \ s \ pathstart g = x \ pathfinish g = y )}" - apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto - -lemma mem_path_component_set:"x \ path_component s y \ path_component s y x" unfolding mem_def by auto - -lemma path_component_subset: "(path_component s x) \ s" - apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def) - -lemma path_component_eq_empty: "path_component s x = {} \ x \ s" - apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set - apply(drule path_component_mem(1)) using path_component_refl by auto - -subsection {* Path connectedness of a space. *} - -definition "path_connected s \ (\x\s. \y\s. \g. path g \ (path_image g) \ s \ pathstart g = x \ pathfinish g = y)" - -lemma path_connected_component: "path_connected s \ (\x\s. \y\s. path_component s x y)" - unfolding path_connected_def path_component_def by auto - -lemma path_connected_component_set: "path_connected s \ (\x\s. path_component s x = s)" - unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset) - unfolding subset_eq mem_path_component_set Ball_def mem_def by auto - -subsection {* Some useful lemmas about path-connectedness. *} - -lemma convex_imp_path_connected: - fixes s :: "'a::real_normed_vector set" - assumes "convex s" shows "path_connected s" - unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI) - unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto - -lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s" - unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof- - fix e1 e2 assume as:"open e1" "open e2" "s \ e1 \ e2" "e1 \ e2 \ s = {}" "e1 \ s \ {}" "e2 \ s \ {}" - then obtain x1 x2 where obt:"x1\e1\s" "x2\e2\s" by auto - then obtain g where g:"path g" "path_image g \ s" "pathstart g = x1" "pathfinish g = x2" - using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto - have *:"connected {0..1::real}" by(auto intro!: convex_connected convex_real_interval) - have "{0..1} \ {x \ {0..1}. g x \ e1} \ {x \ {0..1}. g x \ e2}" using as(3) g(2)[unfolded path_defs] by blast - moreover have "{x \ {0..1}. g x \ e1} \ {x \ {0..1}. g x \ e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto - moreover have "{x \ {0..1}. g x \ e1} \ {} \ {x \ {0..1}. g x \ e2} \ {}" using g(3,4)[unfolded path_defs] using obt - by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl) - ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\{0..1}. g x \ e1}" "{x\{0..1}. g x \ e2}"] - using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)] - using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed - -lemma open_path_component: - fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) - assumes "open s" shows "open(path_component s x)" - unfolding open_contains_ball proof - fix y assume as:"y \ path_component s x" - hence "y\s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto - then obtain e where e:"e>0" "ball y e \ s" using assms[unfolded open_contains_ball] by auto - show "\e>0. ball y e \ path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof- - fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer - apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0` - using as[unfolded mem_def] by auto qed qed - -lemma open_non_path_component: - fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) - assumes "open s" shows "open(s - path_component s x)" - unfolding open_contains_ball proof - fix y assume as:"y\s - path_component s x" - then obtain e where e:"e>0" "ball y e \ s" using assms[unfolded open_contains_ball] by auto - show "\e>0. ball y e \ s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr) - fix z assume "z\ball y e" "\ z \ path_component s x" - hence "y \ path_component s x" unfolding not_not mem_path_component_set using `e>0` - apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)]) - apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto - thus False using as by auto qed(insert e(2), auto) qed - -lemma connected_open_path_connected: - fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) - assumes "open s" "connected s" shows "path_connected s" - unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule) - fix x y assume "x \ s" "y \ s" show "y \ path_component s x" proof(rule ccontr) - assume "y \ path_component s x" moreover - have "path_component s x \ s \ {}" using `x\s` path_component_eq_empty path_component_subset[of s x] by auto - ultimately show False using `y\s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] - using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto -qed qed - -lemma path_connected_continuous_image: - assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)" - unfolding path_connected_def proof(rule,rule) - fix x' y' assume "x' \ f ` s" "y' \ f ` s" - then obtain x y where xy:"x\s" "y\s" "x' = f x" "y' = f y" by auto - guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] .. - thus "\g. path g \ path_image g \ f ` s \ pathstart g = x' \ pathfinish g = y'" - unfolding xy apply(rule_tac x="f \ g" in exI) unfolding path_defs - using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed - -lemma homeomorphic_path_connectedness: - "s homeomorphic t \ (path_connected s \ path_connected t)" - unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule - apply(drule_tac f=f in path_connected_continuous_image) prefer 3 - apply(drule_tac f=g in path_connected_continuous_image) by auto - -lemma path_connected_empty: "path_connected {}" - unfolding path_connected_def by auto - -lemma path_connected_singleton: "path_connected {a}" - unfolding path_connected_def pathstart_def pathfinish_def path_image_def - apply (clarify, rule_tac x="\x. a" in exI, simp add: image_constant_conv) - apply (simp add: path_def continuous_on_const) - done - -lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \ t \ {}" - shows "path_connected (s \ t)" unfolding path_connected_component proof(rule,rule) - fix x y assume as:"x \ s \ t" "y \ s \ t" - from assms(3) obtain z where "z \ s \ t" by auto - thus "path_component (s \ t) x y" using as using assms(1-2)[unfolded path_connected_component] apply- - apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z]) - by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed - -subsection {* sphere is path-connected. *} - -lemma path_connected_punctured_universe: - assumes "2 \ CARD('n::finite)" shows "path_connected((UNIV::(real^'n) set) - {a})" proof- - obtain \ where \:"bij_betw \ {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto - let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}" - let ?basis = "\k. basis (\ k)" - let ?A = "\k. {x::real^'n. \i\{1..k}. inner (basis (\ i)) x \ 0}" - have "\k\{2..CARD('n)}. path_connected (?A k)" proof - have *:"\k. ?A (Suc k) = {x. inner (?basis (Suc k)) x < 0} \ {x. inner (?basis (Suc k)) x > 0} \ ?A k" apply(rule set_ext,rule) defer - apply(erule UnE)+ unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI) - by(auto elim!: ballE simp add: not_less le_Suc_eq) - fix k assume "k \ {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k) - case (Suc k) show ?case proof(cases "k = 1") - case False from Suc have d:"k \ {1..CARD('n)}" "Suc k \ {1..CARD('n)}" by auto - hence "\ k \ \ (Suc k)" using \[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto - hence **:"?basis k + ?basis (Suc k) \ {x. 0 < inner (?basis (Suc k)) x} \ (?A k)" - "?basis k - ?basis (Suc k) \ {x. 0 > inner (?basis (Suc k)) x} \ ({x. 0 < inner (?basis (Suc k)) x} \ (?A k))" using d - by(auto simp add: inner_basis intro!:bexI[where x=k]) - show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un) - prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt) - apply(rule Suc(1)) using d ** False by auto - next case True hence d:"1\{1..CARD('n)}" "2\{1..CARD('n)}" using Suc(2) by auto - have ***:"Suc 1 = 2" by auto - have **:"\s t P Q. s \ t \ {x. P x \ Q x} = (s \ {x. P x}) \ (t \ {x. Q x})" by auto - have nequals0I:"\x A. x\A \ A \ {}" by auto - have "\ 2 \ \ (Suc 0)" using \[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=2]] using assms by auto - thus ?thesis unfolding * True unfolding ** neq_iff bex_disj_distrib apply - - apply(rule path_connected_Un, rule_tac[1-2] path_connected_Un) defer 3 apply(rule_tac[1-4] convex_imp_path_connected) - apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I) - apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I) - apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I) - using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add: inner_basis) - qed qed auto qed note lem = this - - have ***:"\x::real^'n. (\i\{1..CARD('n)}. inner (basis (\ i)) x \ 0) \ (\i. inner (basis i) x \ 0)" - apply rule apply(erule bexE) apply(rule_tac x="\ i" in exI) defer apply(erule exE) proof- - fix x::"real^'n" and i assume as:"inner (basis i) x \ 0" - have "i\\ ` {1..CARD('n)}" using \[unfolded bij_betw_def, THEN conjunct2] by auto - then obtain j where "j\{1..CARD('n)}" "\ j = i" by auto - thus "\i\{1..CARD('n)}. inner (basis (\ i)) x \ 0" apply(rule_tac x=j in bexI) using as by auto qed auto - have *:"?U - {a} = (\x. x + a) ` {x. x \ 0}" apply(rule set_ext) unfolding image_iff - apply rule apply(rule_tac x="x - a" in bexI) by auto - have **:"\x::real^'n. x\0 \ (\i. inner (basis i) x \ 0)" unfolding Cart_eq by(auto simp add: inner_basis) - show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+ - unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed - -lemma path_connected_sphere: assumes "2 \ CARD('n::finite)" shows "path_connected {x::real^'n. norm(x - a) = r}" proof(cases "r\0") - case True thus ?thesis proof(cases "r=0") - case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto - thus ?thesis using path_connected_empty by auto - qed(auto intro!:path_connected_singleton) next - case False hence *:"{x::real^'n. norm(x - a) = r} = (\x. a + r *\<^sub>R x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule) - unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib) - have **:"{x::real^'n. norm x = 1} = (\x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_ext,rule) - unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm) - have "continuous_on (UNIV - {0}) (\x::real^'n. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within - apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within) - apply(rule continuous_at_norm[unfolded o_def]) by auto - thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms] - by(auto intro!: path_connected_continuous_image continuous_on_intros) qed - -lemma connected_sphere: "2 \ CARD('n) \ connected {x::real^'n. norm(x - a) = r}" - using path_connected_sphere path_connected_imp_connected by auto - end