diff -r 24c466b2cdc8 -r 68dd8b51c6b8 src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Sun Feb 21 20:54:40 2010 +0100 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Sun Feb 21 20:55:12 2010 +0100 @@ -1,4 +1,4 @@ -(* Title: Library/Euclidean_Space +(* Title: Library/Multivariate_Analysis/Euclidean_Space.thy Author: Amine Chaieb, University of Cambridge *) @@ -66,8 +66,8 @@ instantiation cart :: (plus,finite) plus begin -definition vector_add_def : "op + \ (\ x y. (\ i. (x$i) + (y$i)))" -instance .. + definition vector_add_def : "op + \ (\ x y. (\ i. (x$i) + (y$i)))" + instance .. end instantiation cart :: (times,finite) times @@ -76,39 +76,42 @@ instance .. end -instantiation cart :: (minus,finite) minus begin +instantiation cart :: (minus,finite) minus +begin definition vector_minus_def : "op - \ (\ x y. (\ i. (x$i) - (y$i)))" -instance .. + instance .. end -instantiation cart :: (uminus,finite) uminus begin +instantiation cart :: (uminus,finite) uminus +begin definition vector_uminus_def : "uminus \ (\ x. (\ i. - (x$i)))" -instance .. + instance .. end -instantiation cart :: (zero,finite) zero begin +instantiation cart :: (zero,finite) zero +begin definition vector_zero_def : "0 \ (\ i. 0)" -instance .. + instance .. end -instantiation cart :: (one,finite) one begin +instantiation cart :: (one,finite) one +begin definition vector_one_def : "1 \ (\ i. 1)" -instance .. + instance .. end instantiation cart :: (ord,finite) ord - begin -definition vector_le_def: - "less_eq (x :: 'a ^'b) y = (ALL i. x$i <= y$i)" -definition vector_less_def: "less (x :: 'a ^'b) y = (ALL i. x$i < y$i)" - -instance by (intro_classes) +begin + definition vector_le_def: + "less_eq (x :: 'a ^'b) y = (ALL i. x$i <= y$i)" + definition vector_less_def: "less (x :: 'a ^'b) y = (ALL i. x$i < y$i)" + instance by (intro_classes) end instantiation cart :: (scaleR, finite) scaleR begin -definition vector_scaleR_def: "scaleR = (\ r x. (\ i. scaleR r (x$i)))" -instance .. + definition vector_scaleR_def: "scaleR = (\ r x. (\ i. scaleR r (x$i)))" + instance .. end text{* Also the scalar-vector multiplication. *}