diff -r 23a8c5ac35f8 -r 69916a850301 src/HOL/Isar_examples/Mutilated_Checkerboard.thy --- a/src/HOL/Isar_examples/Mutilated_Checkerboard.thy Sat Oct 17 01:05:59 2009 +0200 +++ b/src/HOL/Isar_examples/Mutilated_Checkerboard.thy Sat Oct 17 14:43:18 2009 +0200 @@ -43,12 +43,12 @@ show "(a Un t) Un u : ?T" proof - have "a Un (t Un u) : ?T" - using `a : A` + using `a : A` proof (rule tiling.Un) from `(a Un t) Int u = {}` have "t Int u = {}" by blast then show "t Un u: ?T" by (rule Un) from `a <= - t` and `(a Un t) Int u = {}` - show "a <= - (t Un u)" by blast + show "a <= - (t Un u)" by blast qed also have "a Un (t Un u) = (a Un t) Un u" by (simp only: Un_assoc) @@ -229,7 +229,7 @@ moreover have "card ... = Suc (card (?e t b))" proof (rule card_insert_disjoint) from `t \ tiling domino` have "finite t" - by (rule tiling_domino_finite) + by (rule tiling_domino_finite) then show "finite (?e t b)" by (rule evnodd_finite) from e have "(i, j) : ?e a b" by simp