diff -r 23a8c5ac35f8 -r 69916a850301 src/HOL/Library/Ramsey.thy --- a/src/HOL/Library/Ramsey.thy Sat Oct 17 01:05:59 2009 +0200 +++ b/src/HOL/Library/Ramsey.thy Sat Oct 17 14:43:18 2009 +0200 @@ -1,5 +1,5 @@ (* Title: HOL/Library/Ramsey.thy - Author: Tom Ridge. Converted to structured Isar by L C Paulson + Author: Tom Ridge. Converted to structured Isar by L C Paulson *) header "Ramsey's Theorem" @@ -91,8 +91,8 @@ from Suc.prems infinite_imp_nonempty obtain yy where yy: "yy \ YY" by blast let ?ramr = "{((y,Y,t),(y',Y',t')). y' \ Y & Y' \ Y}" let ?propr = "%(y,Y,t). - y \ YY & y \ Y & Y \ YY & infinite Y & t < s - & (\X. X\Y & finite X & card X = r --> (f o insert y) X = t)" + y \ YY & y \ Y & Y \ YY & infinite Y & t < s + & (\X. X\Y & finite X & card X = r --> (f o insert y) X = t)" have infYY': "infinite (YY-{yy})" using Suc.prems by auto have partf': "part r s (YY - {yy}) (f \ insert yy)" by (simp add: o_def part_Suc_imp_part yy Suc.prems) @@ -115,16 +115,16 @@ with fields px yx' Suc.prems have partfx': "part r s (Yx - {yx'}) (f \ insert yx')" by (simp add: o_def part_Suc_imp_part part_subset [where ?YY=YY]) - from Suc.hyps [OF infYx' partfx'] - obtain Y' and t' - where Y': "Y' \ Yx - {yx'}" "infinite Y'" "t' < s" - "\X. X\Y' \ finite X \ card X = r \ (f \ insert yx') X = t'" - by blast - show ?thesis - proof - show "?propr (yx',Y',t') & (x, (yx',Y',t')) \ ?ramr" - using fields Y' yx' px by blast - qed + from Suc.hyps [OF infYx' partfx'] + obtain Y' and t' + where Y': "Y' \ Yx - {yx'}" "infinite Y'" "t' < s" + "\X. X\Y' \ finite X \ card X = r \ (f \ insert yx') X = t'" + by blast + show ?thesis + proof + show "?propr (yx',Y',t') & (x, (yx',Y',t')) \ ?ramr" + using fields Y' yx' px by blast + qed qed qed from dependent_choice [OF transr propr0 proprstep] @@ -191,7 +191,7 @@ by (simp add: cardX ya) ultimately show ?thesis using pg [of "LEAST x. x \ AA"] fields cardX - by (clarsimp simp del:insert_Diff_single) + by (clarsimp simp del:insert_Diff_single) qed also have "... = s'" using AA AAleast fields by auto finally show ?thesis .