diff -r b9160ca067ae -r 69d680e94961 src/HOL/Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Sat May 26 10:11:11 2018 +0100 +++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Sat May 26 22:11:55 2018 +0100 @@ -47,26 +47,6 @@ lemma lambda_one: "(\x::'a::monoid_mult. x) = ( * ) 1" by auto -lemma continuous_mult_left: - fixes c::"'a::real_normed_algebra" - shows "continuous F f \ continuous F (\x. c * f x)" -by (rule continuous_mult [OF continuous_const]) - -lemma continuous_mult_right: - fixes c::"'a::real_normed_algebra" - shows "continuous F f \ continuous F (\x. f x * c)" -by (rule continuous_mult [OF _ continuous_const]) - -lemma continuous_on_mult_left: - fixes c::"'a::real_normed_algebra" - shows "continuous_on s f \ continuous_on s (\x. c * f x)" -by (rule continuous_on_mult [OF continuous_on_const]) - -lemma continuous_on_mult_right: - fixes c::"'a::real_normed_algebra" - shows "continuous_on s f \ continuous_on s (\x. f x * c)" -by (rule continuous_on_mult [OF _ continuous_on_const]) - lemma uniformly_continuous_on_cmul_right [continuous_intros]: fixes f :: "'a::real_normed_vector \ 'b::real_normed_algebra" shows "uniformly_continuous_on s f \ uniformly_continuous_on s (\x. f x * c)"