diff -r d21c95af2df7 -r 69e96e5500df src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Thu Apr 12 22:55:11 2012 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Thu Apr 12 23:07:01 2012 +0200 @@ -5428,13 +5428,13 @@ lemma closure_sum: fixes S T :: "('n::euclidean_space) set" - shows "closure S \ closure T \ closure (S \ T)" + shows "closure S + closure T \ closure (S + T)" proof- - have "(closure S) \ (closure T) = (\(x,y). x + y) ` (closure S \ closure T)" + have "(closure S) + (closure T) = (\(x,y). x + y) ` (closure S \ closure T)" by (simp add: set_plus_image) also have "... = (\(x,y). x + y) ` closure (S \ T)" using closure_direct_sum by auto - also have "... \ closure (S \ T)" + also have "... \ closure (S + T)" using fst_snd_linear closure_linear_image[of "(\(x,y). x + y)" "S \ T"] by (auto simp: set_plus_image) finally show ?thesis @@ -5444,7 +5444,7 @@ lemma convex_oplus: fixes S T :: "('n::euclidean_space) set" assumes "convex S" "convex T" -shows "convex (S \ T)" +shows "convex (S + T)" proof- have "{x + y |x y. x : S & y : T} = {c. EX a:S. EX b:T. c = a + b}" by auto thus ?thesis unfolding set_plus_def using convex_sums[of S T] assms by auto @@ -5452,13 +5452,13 @@ lemma convex_hull_sum: fixes S T :: "('n::euclidean_space) set" -shows "convex hull (S \ T) = (convex hull S) \ (convex hull T)" +shows "convex hull (S + T) = (convex hull S) + (convex hull T)" proof- -have "(convex hull S) \ (convex hull T) = +have "(convex hull S) + (convex hull T) = (%(x,y). x + y) ` ((convex hull S) <*> (convex hull T))" by (simp add: set_plus_image) also have "... = (%(x,y). x + y) ` (convex hull (S <*> T))" using convex_hull_direct_sum by auto -also have "...= convex hull (S \ T)" using fst_snd_linear linear_conv_bounded_linear +also have "...= convex hull (S + T)" using fst_snd_linear linear_conv_bounded_linear convex_hull_linear_image[of "(%(x,y). x + y)" "S <*> T"] by (auto simp add: set_plus_image) finally show ?thesis by auto qed @@ -5466,12 +5466,12 @@ lemma rel_interior_sum: fixes S T :: "('n::euclidean_space) set" assumes "convex S" "convex T" -shows "rel_interior (S \ T) = (rel_interior S) \ (rel_interior T)" +shows "rel_interior (S + T) = (rel_interior S) + (rel_interior T)" proof- -have "(rel_interior S) \ (rel_interior T) = (%(x,y). x + y) ` (rel_interior S <*> rel_interior T)" +have "(rel_interior S) + (rel_interior T) = (%(x,y). x + y) ` (rel_interior S <*> rel_interior T)" by (simp add: set_plus_image) also have "... = (%(x,y). x + y) ` rel_interior (S <*> T)" using rel_interior_direct_sum assms by auto -also have "...= rel_interior (S \ T)" using fst_snd_linear convex_direct_sum assms +also have "...= rel_interior (S + T)" using fst_snd_linear convex_direct_sum assms rel_interior_convex_linear_image[of "(%(x,y). x + y)" "S <*> T"] by (auto simp add: set_plus_image) finally show ?thesis by auto qed @@ -5507,7 +5507,7 @@ lemma convex_rel_open_sum: fixes S T :: "('n::euclidean_space) set" assumes "convex S" "rel_open S" "convex T" "rel_open T" -shows "convex (S \ T) & rel_open (S \ T)" +shows "convex (S + T) & rel_open (S + T)" by (metis assms convex_oplus rel_interior_sum rel_open_def) lemma convex_hull_finite_union_cones: @@ -5547,7 +5547,7 @@ fixes S T :: "('m::euclidean_space) set" assumes "convex S" "cone S" "S ~= {}" assumes "convex T" "cone T" "T ~= {}" -shows "convex hull (S Un T) = S \ T" +shows "convex hull (S Un T) = S + T" proof- def I == "{(1::nat),2}" def A == "(%i. (if i=(1::nat) then S else T))" @@ -5556,7 +5556,7 @@ moreover have "convex hull Union (A ` I) = setsum A I" apply (subst convex_hull_finite_union_cones[of I A]) using assms A_def I_def by auto moreover have - "setsum A I = S \ T" using A_def I_def + "setsum A I = S + T" using A_def I_def unfolding set_plus_def apply auto unfolding set_plus_def by auto ultimately show ?thesis by auto qed