diff -r a7a537e0413a -r 6a0801279f4c src/ZF/Nat_ZF.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/Nat_ZF.thy Mon Feb 11 15:40:21 2008 +0100 @@ -0,0 +1,302 @@ +(* Title: ZF/Nat.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1994 University of Cambridge + +*) + +header{*The Natural numbers As a Least Fixed Point*} + +theory Nat_ZF imports OrdQuant Bool begin + +definition + nat :: i where + "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})" + +definition + quasinat :: "i => o" where + "quasinat(n) == n=0 | (\m. n = succ(m))" + +definition + (*Has an unconditional succ case, which is used in "recursor" below.*) + nat_case :: "[i, i=>i, i]=>i" where + "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))" + +definition + nat_rec :: "[i, i, [i,i]=>i]=>i" where + "nat_rec(k,a,b) == + wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))" + + (*Internalized relations on the naturals*) + +definition + Le :: i where + "Le == {:nat*nat. x le y}" + +definition + Lt :: i where + "Lt == {:nat*nat. x < y}" + +definition + Ge :: i where + "Ge == {:nat*nat. y le x}" + +definition + Gt :: i where + "Gt == {:nat*nat. y < x}" + +definition + greater_than :: "i=>i" where + "greater_than(n) == {i:nat. n < i}" + +text{*No need for a less-than operator: a natural number is its list of +predecessors!*} + + +lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} Un {succ(i). i:X})" +apply (rule bnd_monoI) +apply (cut_tac infinity, blast, blast) +done + +(* nat = {0} Un {succ(x). x:nat} *) +lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold], standard] + +(** Type checking of 0 and successor **) + +lemma nat_0I [iff,TC]: "0 : nat" +apply (subst nat_unfold) +apply (rule singletonI [THEN UnI1]) +done + +lemma nat_succI [intro!,TC]: "n : nat ==> succ(n) : nat" +apply (subst nat_unfold) +apply (erule RepFunI [THEN UnI2]) +done + +lemma nat_1I [iff,TC]: "1 : nat" +by (rule nat_0I [THEN nat_succI]) + +lemma nat_2I [iff,TC]: "2 : nat" +by (rule nat_1I [THEN nat_succI]) + +lemma bool_subset_nat: "bool <= nat" +by (blast elim!: boolE) + +lemmas bool_into_nat = bool_subset_nat [THEN subsetD, standard] + + +subsection{*Injectivity Properties and Induction*} + +(*Mathematical induction*) +lemma nat_induct [case_names 0 succ, induct set: nat]: + "[| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x)) |] ==> P(n)" +by (erule def_induct [OF nat_def nat_bnd_mono], blast) + +lemma natE: + "[| n: nat; n=0 ==> P; !!x. [| x: nat; n=succ(x) |] ==> P |] ==> P" +by (erule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE], auto) + +lemma nat_into_Ord [simp]: "n: nat ==> Ord(n)" +by (erule nat_induct, auto) + +(* i: nat ==> 0 le i; same thing as 0 i le i; same thing as i nat ==> ~ Limit(a)" +by (induct a rule: nat_induct, auto) + +lemma succ_natD: "succ(i): nat ==> i: nat" +by (rule Ord_trans [OF succI1], auto) + +lemma nat_succ_iff [iff]: "succ(n): nat <-> n: nat" +by (blast dest!: succ_natD) + +lemma nat_le_Limit: "Limit(i) ==> nat le i" +apply (rule subset_imp_le) +apply (simp_all add: Limit_is_Ord) +apply (rule subsetI) +apply (erule nat_induct) + apply (erule Limit_has_0 [THEN ltD]) +apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord) +done + +(* [| succ(i): k; k: nat |] ==> i: k *) +lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord] + +lemma lt_nat_in_nat: "[| m m: nat" +apply (erule ltE) +apply (erule Ord_trans, assumption, simp) +done + +lemma le_in_nat: "[| m le n; n:nat |] ==> m:nat" +by (blast dest!: lt_nat_in_nat) + + +subsection{*Variations on Mathematical Induction*} + +(*complete induction*) + +lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1] + +lemmas complete_induct_rule = + complete_induct [rule_format, case_names less, consumes 1] + + +lemma nat_induct_from_lemma [rule_format]: + "[| n: nat; m: nat; + !!x. [| x: nat; m le x; P(x) |] ==> P(succ(x)) |] + ==> m le n --> P(m) --> P(n)" +apply (erule nat_induct) +apply (simp_all add: distrib_simps le0_iff le_succ_iff) +done + +(*Induction starting from m rather than 0*) +lemma nat_induct_from: + "[| m le n; m: nat; n: nat; + P(m); + !!x. [| x: nat; m le x; P(x) |] ==> P(succ(x)) |] + ==> P(n)" +apply (blast intro: nat_induct_from_lemma) +done + +(*Induction suitable for subtraction and less-than*) +lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]: + "[| m: nat; n: nat; + !!x. x: nat ==> P(x,0); + !!y. y: nat ==> P(0,succ(y)); + !!x y. [| x: nat; y: nat; P(x,y) |] ==> P(succ(x),succ(y)) |] + ==> P(m,n)" +apply (erule_tac x = m in rev_bspec) +apply (erule nat_induct, simp) +apply (rule ballI) +apply (rename_tac i j) +apply (erule_tac n=j in nat_induct, auto) +done + + +(** Induction principle analogous to trancl_induct **) + +lemma succ_lt_induct_lemma [rule_format]: + "m: nat ==> P(m,succ(m)) --> (ALL x: nat. P(m,x) --> P(m,succ(x))) --> + (ALL n:nat. m P(m,n))" +apply (erule nat_induct) + apply (intro impI, rule nat_induct [THEN ballI]) + prefer 4 apply (intro impI, rule nat_induct [THEN ballI]) +apply (auto simp add: le_iff) +done + +lemma succ_lt_induct: + "[| m P(m,succ(x)) |] + ==> P(m,n)" +by (blast intro: succ_lt_induct_lemma lt_nat_in_nat) + +subsection{*quasinat: to allow a case-split rule for @{term nat_case}*} + +text{*True if the argument is zero or any successor*} +lemma [iff]: "quasinat(0)" +by (simp add: quasinat_def) + +lemma [iff]: "quasinat(succ(x))" +by (simp add: quasinat_def) + +lemma nat_imp_quasinat: "n \ nat ==> quasinat(n)" +by (erule natE, simp_all) + +lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0" +by (simp add: quasinat_def nat_case_def) + +lemma nat_cases_disj: "k=0 | (\y. k = succ(y)) | ~ quasinat(k)" +apply (case_tac "k=0", simp) +apply (case_tac "\m. k = succ(m)") +apply (simp_all add: quasinat_def) +done + +lemma nat_cases: + "[|k=0 ==> P; !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P" +by (insert nat_cases_disj [of k], blast) + +(** nat_case **) + +lemma nat_case_0 [simp]: "nat_case(a,b,0) = a" +by (simp add: nat_case_def) + +lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)" +by (simp add: nat_case_def) + +lemma nat_case_type [TC]: + "[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) |] + ==> nat_case(a,b,n) : C(n)"; +by (erule nat_induct, auto) + +lemma split_nat_case: + "P(nat_case(a,b,k)) <-> + ((k=0 --> P(a)) & (\x. k=succ(x) --> P(b(x))) & (~ quasinat(k) \ P(0)))" +apply (rule nat_cases [of k]) +apply (auto simp add: non_nat_case) +done + + +subsection{*Recursion on the Natural Numbers*} + +(** nat_rec is used to define eclose and transrec, then becomes obsolete. + The operator rec, from arith.thy, has fewer typing conditions **) + +lemma nat_rec_0: "nat_rec(0,a,b) = a" +apply (rule nat_rec_def [THEN def_wfrec, THEN trans]) + apply (rule wf_Memrel) +apply (rule nat_case_0) +done + +lemma nat_rec_succ: "m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))" +apply (rule nat_rec_def [THEN def_wfrec, THEN trans]) + apply (rule wf_Memrel) +apply (simp add: vimage_singleton_iff) +done + +(** The union of two natural numbers is a natural number -- their maximum **) + +lemma Un_nat_type [TC]: "[| i: nat; j: nat |] ==> i Un j: nat" +apply (rule Un_least_lt [THEN ltD]) +apply (simp_all add: lt_def) +done + +lemma Int_nat_type [TC]: "[| i: nat; j: nat |] ==> i Int j: nat" +apply (rule Int_greatest_lt [THEN ltD]) +apply (simp_all add: lt_def) +done + +(*needed to simplify unions over nat*) +lemma nat_nonempty [simp]: "nat ~= 0" +by blast + +text{*A natural number is the set of its predecessors*} +lemma nat_eq_Collect_lt: "i \ nat ==> {j\nat. j : Le <-> x le y & x : nat & y : nat" +by (force simp add: Le_def) + +end