diff -r 733e256ecdf3 -r 6a9e2a82ea15 src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Wed Apr 03 12:55:27 2019 +0100 +++ b/src/HOL/Algebra/Group.thy Wed Apr 03 14:55:30 2019 +0100 @@ -9,6 +9,11 @@ imports Complete_Lattice "HOL-Library.FuncSet" begin +(*MOVE*) +lemma image_paired_Times: + "(\(x,y). (f x,g y)) ` (A \ B) = (f ` A) \ (g ` B)" + by auto + section \Monoids and Groups\ subsection \Definitions\ @@ -1250,10 +1255,6 @@ using assms by (fastforce simp: hom_def Pi_def dest!: group.is_monoid) -lemma image_paired_Times: - "(\(x,y). (f x,g y)) ` (A \ B) = (f ` A) \ (g ` B)" - by auto - lemma iso_paired2: assumes "group G" "group H" shows "(\(x,y). (f x,g y)) \ iso (DirProd G H) (DirProd G' H') \ f \ iso G G' \ g \ iso H H'"