diff -r 29fe9bac501b -r 6ab1c7cb0b8d src/HOL/Fact.thy --- a/src/HOL/Fact.thy Fri Jun 27 22:08:55 2014 +0200 +++ b/src/HOL/Fact.thy Sat Jun 28 09:16:42 2014 +0200 @@ -202,7 +202,7 @@ also from Suc.hyps have "... = Suc (n + d') * \{n + 1..n + d'}" unfolding div_mult1_eq[of _ "fact (n + d')"] by (simp add: fact_mod) also have "... = \{n + 1..n + Suc d'}" - by (simp add: atLeastAtMostSuc_conv setprod_insert) + by (simp add: atLeastAtMostSuc_conv setprod.insert) finally show ?case . qed from this `m = n + d` show ?thesis by simp @@ -314,7 +314,7 @@ assumes "r \ n" shows "fact n div fact (n - r) \ n ^ r" proof - have "\r. r \ n \ \{n - r..n} = (n - r) * \{Suc (n - r)..n}" - by (subst setprod_insert[symmetric]) (auto simp: atLeastAtMost_insertL) + by (subst setprod.insert[symmetric]) (auto simp: atLeastAtMost_insertL) with assms show ?thesis by (induct r rule: nat.induct) (auto simp add: fact_div_fact Suc_diff_Suc mult_le_mono) qed