diff -r 3e3e7a68cd80 -r 6ad2c917dd2e src/HOL/Analysis/Set_Integral.thy --- a/src/HOL/Analysis/Set_Integral.thy Wed Oct 09 22:01:33 2024 +0200 +++ b/src/HOL/Analysis/Set_Integral.thy Wed Oct 09 23:38:29 2024 +0200 @@ -577,21 +577,17 @@ syntax "_complex_lebesgue_integral" :: "pttrn \ complex \ 'a measure \ complex" - (\\\<^sup>C _. _ \_\ [0,0] 110) - + (\(\open_block notation=\binder integral\\\\<^sup>C _. _ \_)\ [0,0] 110) syntax_consts "_complex_lebesgue_integral" == complex_lebesgue_integral - translations "\\<^sup>Cx. f \M" == "CONST complex_lebesgue_integral M (\x. f)" syntax "_ascii_complex_lebesgue_integral" :: "pttrn \ 'a measure \ real \ real" (\(\indent=3 notation=\binder CLINT\\CLINT _|_. _)\ [0,0,10] 10) - syntax_consts "_ascii_complex_lebesgue_integral" == complex_lebesgue_integral - translations "CLINT x|M. f" == "CONST complex_lebesgue_integral M (\x. f)" @@ -646,19 +642,16 @@ abbreviation "set_nn_integral M A f \ nn_integral M (\x. f x * indicator A x)" syntax -"_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" -(\(\notation=\binder integral\\\\<^sup>+((_)\(_)./ _)/\_)\ [0,0,0,110] 10) - -"_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" -(\(\notation=\binder integral\\\((_)\(_)./ _)/\_)\ [0,0,0,110] 10) - + "_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" + (\(\notation=\binder integral\\\\<^sup>+((_)\(_)./ _)/\_)\ [0,0,0,110] 10) + "_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" + (\(\notation=\binder integral\\\((_)\(_)./ _)/\_)\ [0,0,0,110] 10) syntax_consts -"_set_nn_integral" == set_nn_integral and -"_set_lebesgue_integral" == set_lebesgue_integral - + "_set_nn_integral" == set_nn_integral and + "_set_lebesgue_integral" == set_lebesgue_integral translations -"\\<^sup>+x \ A. f \M" == "CONST set_nn_integral M A (\x. f)" -"\x \ A. f \M" == "CONST set_lebesgue_integral M A (\x. f)" + "\\<^sup>+x \ A. f \M" == "CONST set_nn_integral M A (\x. f)" + "\x \ A. f \M" == "CONST set_lebesgue_integral M A (\x. f)" lemma set_nn_integral_cong: assumes "M = M'" "A = B" "\x. x \ space M \ A \ f x = g x"