diff -r 3e3e7a68cd80 -r 6ad2c917dd2e src/HOL/Number_Theory/Cong.thy --- a/src/HOL/Number_Theory/Cong.thy Wed Oct 09 22:01:33 2024 +0200 +++ b/src/HOL/Number_Theory/Cong.thy Wed Oct 09 23:38:29 2024 +0200 @@ -37,11 +37,13 @@ context unique_euclidean_semiring begin -definition cong :: "'a \ 'a \ 'a \ bool" (\(1[_ = _] '(' mod _'))\) - where "cong b c a \ b mod a = c mod a" +definition cong :: "'a \ 'a \ 'a \ bool" + (\(\indent=1 notation=\mixfix cong\\[_ = _] '(' mod _'))\) + where "[b = c] (mod a) \ b mod a = c mod a" -abbreviation notcong :: "'a \ 'a \ 'a \ bool" (\(1[_ \ _] '(' mod _'))\) - where "notcong b c a \ \ cong b c a" +abbreviation notcong :: "'a \ 'a \ 'a \ bool" + (\(\indent=1 notation=\mixfix notcong\\[_ \ _] '(' mod _'))\) + where "[b \ c] (mod a) \ \ cong b c a" lemma cong_refl [simp]: "[b = b] (mod a)"