diff -r f30e941b4512 -r 6b1c0a80a57a src/HOL/Probability/Lebesgue_Measure.thy --- a/src/HOL/Probability/Lebesgue_Measure.thy Tue Mar 13 16:40:06 2012 +0100 +++ b/src/HOL/Probability/Lebesgue_Measure.thy Tue Mar 13 16:56:56 2012 +0100 @@ -48,7 +48,7 @@ qed lemma cube_subset_Suc[intro]: "cube n \ cube (Suc n)" - unfolding cube_def_raw subset_eq apply safe unfolding mem_interval by auto + unfolding cube_def subset_eq apply safe unfolding mem_interval apply auto done subsection {* Lebesgue measure *} @@ -95,7 +95,7 @@ using A by (auto intro!: integrable_sub dest: lebesgueD simp: cube_def) next fix n show "(indicator {} :: _\real) integrable_on cube n" - by (auto simp: cube_def indicator_def_raw) + by (auto simp: cube_def indicator_def [abs_def]) next fix A :: "nat \ 'a set" and n ::nat assume "range A \ sets lebesgue" then have A: "\i. (indicator (A i) :: _ \ real) integrable_on cube n" @@ -193,7 +193,7 @@ have "(?I has_integral content ?R) (cube n) \ (indicator ?R has_integral content ?R) UNIV" unfolding has_integral_restrict_univ[where s="cube n", symmetric] by simp also have "\ \ ((\x. 1) has_integral content ?R) ?R" - unfolding indicator_def_raw has_integral_restrict_univ .. + unfolding indicator_def [abs_def] has_integral_restrict_univ .. finally show ?thesis using has_integral_const[of "1::real" "?N" "?P"] by simp qed @@ -437,9 +437,9 @@ shows lmeasure_atLeastAtMost[simp]: "lebesgue.\ {a..b} = ereal (content {a..b})" proof - have "(indicator (UNIV \ {a..b})::_\real) integrable_on UNIV" - unfolding integrable_indicator_UNIV by (simp add: integrable_const indicator_def_raw) + unfolding integrable_indicator_UNIV by (simp add: integrable_const indicator_def [abs_def]) from lmeasure_eq_integral[OF this] show ?thesis unfolding integral_indicator_UNIV - by (simp add: indicator_def_raw) + by (simp add: indicator_def [abs_def]) qed lemma atLeastAtMost_singleton_euclidean[simp]: @@ -504,7 +504,7 @@ and sets_lborel[simp]: "sets lborel = sets borel" and measure_lborel[simp]: "measure lborel = lebesgue.\" and measurable_lborel[simp]: "measurable lborel = measurable borel" - by (simp_all add: measurable_def_raw lborel_def) + by (simp_all add: measurable_def [abs_def] lborel_def) interpretation lborel: measure_space "lborel :: ('a::ordered_euclidean_space) measure_space" where "space lborel = UNIV" @@ -871,7 +871,7 @@ let ?E = "\ space = UNIV :: 'a set, sets = range (\(a,b). {a..b}) \" show "Int_stable ?E" using Int_stable_cuboids . - show "range cube \ sets ?E" unfolding cube_def_raw by auto + show "range cube \ sets ?E" unfolding cube_def [abs_def] by auto show "incseq cube" using cube_subset_Suc by (auto intro!: incseq_SucI) { fix x have "\n. x \ cube n" using mem_big_cube[of x] by fastforce } then show "(\i. cube i) = space ?E" by auto @@ -1001,7 +1001,7 @@ then show "(\i. cube i) = space ?E" by auto show "incseq cube" by (intro incseq_SucI cube_subset_Suc) show "range cube \ sets ?E" - unfolding cube_def_raw by auto + unfolding cube_def [abs_def] by auto show "\i. measure lebesgue (cube i) \ \" by (simp add: cube_def) show "measure_space lborel" by default