diff -r bbfa6b01a55f -r 6be497cacab5 src/HOL/Hyperreal/NSA.thy --- a/src/HOL/Hyperreal/NSA.thy Mon Mar 15 10:46:01 2004 +0100 +++ b/src/HOL/Hyperreal/NSA.thy Mon Mar 15 10:46:19 2004 +0100 @@ -1848,7 +1848,7 @@ lemma HFinite_FreeUltrafilterNat: "x \ HFinite ==> \X \ Rep_hypreal x. \u. {n. abs (X n) < u} \ FreeUltrafilterNat" -apply (rule eq_Abs_hypreal [of x]) +apply (cases x) apply (auto simp add: HFinite_def abs_less_iff minus_less_iff [of x] hypreal_less SReal_iff hypreal_minus hypreal_of_real_def) apply (rule_tac x=x in bexI) @@ -1859,7 +1859,7 @@ "\X \ Rep_hypreal x. \u. {n. abs (X n) < u} \ FreeUltrafilterNat ==> x \ HFinite" -apply (rule eq_Abs_hypreal [of x]) +apply (cases x) apply (auto simp add: HFinite_def abs_less_iff minus_less_iff [of x]) apply (rule_tac x = "hypreal_of_real u" in bexI) apply (auto simp add: hypreal_less SReal_iff hypreal_minus hypreal_of_real_def, ultra+) @@ -1954,7 +1954,7 @@ \u. 0 < u --> {n. abs (X n) < u} \ FreeUltrafilterNat" apply (simp add: Infinitesimal_def) apply (auto simp add: abs_less_iff minus_less_iff [of x]) -apply (rule eq_Abs_hypreal [of x]) +apply (cases x) apply (auto, rule bexI [OF _ lemma_hyprel_refl], safe) apply (drule hypreal_of_real_less_iff [THEN iffD2]) apply (drule_tac x = "hypreal_of_real u" in bspec, auto) @@ -1966,7 +1966,7 @@ \u. 0 < u --> {n. abs (X n) < u} \ FreeUltrafilterNat ==> x \ Infinitesimal" apply (simp add: Infinitesimal_def) -apply (rule eq_Abs_hypreal [of x]) +apply (cases x) apply (auto simp add: abs_less_iff abs_interval_iff minus_less_iff [of x]) apply (auto simp add: SReal_iff) apply (drule_tac [!] x=y in spec)