diff -r 6a0852b8e5a8 -r 6beb45f6cf67 src/HOL/Library/Infinite_Set.thy --- a/src/HOL/Library/Infinite_Set.thy Thu Jun 07 15:08:18 2018 +0200 +++ b/src/HOL/Library/Infinite_Set.thy Thu Jun 07 19:36:12 2018 +0200 @@ -68,7 +68,7 @@ have "inj_on nat (abs ` A)" for A by (rule inj_onI) auto then show ?thesis - by (auto simp add: image_comp [symmetric] dest: finite_image_absD finite_imageD) + by (auto simp flip: image_comp dest: finite_image_absD finite_imageD) qed proposition infinite_int_iff_unbounded_le: "infinite S \ (\m. \n. \n\ \ m \ n \ S)" @@ -161,11 +161,11 @@ lemma MOST_nat: "(\\<^sub>\n. P n) \ (\m. \n>m. P n)" for P :: "nat \ bool" - by (auto simp add: eventually_cofinite finite_nat_iff_bounded_le subset_eq not_le[symmetric]) + by (auto simp add: eventually_cofinite finite_nat_iff_bounded_le subset_eq simp flip: not_le) lemma MOST_nat_le: "(\\<^sub>\n. P n) \ (\m. \n\m. P n)" for P :: "nat \ bool" - by (auto simp add: eventually_cofinite finite_nat_iff_bounded subset_eq not_le[symmetric]) + by (auto simp add: eventually_cofinite finite_nat_iff_bounded subset_eq simp flip: not_le) lemma INFM_nat: "(\\<^sub>\n. P n) \ (\m. \n>m. P n)" for P :: "nat \ bool" @@ -286,7 +286,7 @@ apply (subst Suc) apply (use \infinite S\ in simp) apply (intro arg_cong[where f = Least] ext) - apply (auto simp: enumerate_Suc'[symmetric]) + apply (auto simp flip: enumerate_Suc') done qed