diff -r 209c4cbbc4cd -r 6c731c8b7f03 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Sat Jul 02 15:02:24 2016 +0200 +++ b/src/HOL/Transcendental.thy Sat Jul 02 20:22:25 2016 +0200 @@ -1758,7 +1758,7 @@ by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b) hence "inverse (fact (n + 2)) * x ^ (n + 2) \ (x\<^sup>2/2) * ((1/2)^n)" - unfolding power_add by (simp add: ac_simps del: fact.simps) } + unfolding power_add by (simp add: ac_simps del: fact_Suc) } note aux1 = this have "(\n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))" by (intro sums_mult geometric_sums, simp) @@ -3319,7 +3319,7 @@ lemma cos_two_less_zero [simp]: "cos 2 < (0::real)" proof - - note fact.simps(2) [simp del] + note fact_Suc [simp del] from sums_minus [OF cos_paired] have *: "(\n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)" by simp @@ -3335,7 +3335,7 @@ have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))" unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono) then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))" - by (simp only: fact.simps(2) [of "Suc (?six4d)"] of_nat_mult of_nat_fact) + by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact) then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))" by (simp add: inverse_eq_divide less_divide_eq) }