diff -r 24096e89c131 -r 6d46ad54a2ab src/HOL/Old_Number_Theory/Gauss.thy --- a/src/HOL/Old_Number_Theory/Gauss.thy Sun Sep 21 16:56:06 2014 +0200 +++ b/src/HOL/Old_Number_Theory/Gauss.thy Sun Sep 21 16:56:11 2014 +0200 @@ -436,7 +436,7 @@ subsection {* Gauss' Lemma *} -lemma aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A" +lemma aux: "setprod id A * (- 1) ^ card E * a ^ card A * (- 1) ^ card E = setprod id A * a ^ card A" by (auto simp add: finite_E neg_one_special) theorem pre_gauss_lemma: @@ -488,8 +488,8 @@ apply (rule zcong_trans) apply (simp add: aux cong del:setprod.cong) done - with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"] - p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)" + with this zcong_cancel2 [of p "setprod id A" "(- 1) ^ card E" "a ^ card A"] + p_g_0 A_prod_relprime have "[(- 1) ^ card E = a ^ card A](mod p)" by (simp add: order_less_imp_le) from this show ?thesis by (simp add: A_card_eq zcong_sym)