diff -r ee8572f3bb57 -r 6d4cb27ed19c src/HOL/RealVector.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/RealVector.thy Mon Dec 29 14:08:08 2008 +0100 @@ -0,0 +1,841 @@ +(* Title: HOL/RealVector.thy + Author: Brian Huffman +*) + +header {* Vector Spaces and Algebras over the Reals *} + +theory RealVector +imports RealPow +begin + +subsection {* Locale for additive functions *} + +locale additive = + fixes f :: "'a::ab_group_add \ 'b::ab_group_add" + assumes add: "f (x + y) = f x + f y" +begin + +lemma zero: "f 0 = 0" +proof - + have "f 0 = f (0 + 0)" by simp + also have "\ = f 0 + f 0" by (rule add) + finally show "f 0 = 0" by simp +qed + +lemma minus: "f (- x) = - f x" +proof - + have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) + also have "\ = - f x + f x" by (simp add: zero) + finally show "f (- x) = - f x" by (rule add_right_imp_eq) +qed + +lemma diff: "f (x - y) = f x - f y" +by (simp add: diff_def add minus) + +lemma setsum: "f (setsum g A) = (\x\A. f (g x))" +apply (cases "finite A") +apply (induct set: finite) +apply (simp add: zero) +apply (simp add: add) +apply (simp add: zero) +done + +end + +subsection {* Vector spaces *} + +locale vector_space = + fixes scale :: "'a::field \ 'b::ab_group_add \ 'b" + assumes scale_right_distrib: "scale a (x + y) = scale a x + scale a y" + and scale_left_distrib: "scale (a + b) x = scale a x + scale b x" + and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x" + and scale_one [simp]: "scale 1 x = x" +begin + +lemma scale_left_commute: + "scale a (scale b x) = scale b (scale a x)" +by (simp add: mult_commute) + +lemma scale_zero_left [simp]: "scale 0 x = 0" + and scale_minus_left [simp]: "scale (- a) x = - (scale a x)" + and scale_left_diff_distrib: "scale (a - b) x = scale a x - scale b x" +proof - + interpret s: additive ["\a. scale a x"] + proof qed (rule scale_left_distrib) + show "scale 0 x = 0" by (rule s.zero) + show "scale (- a) x = - (scale a x)" by (rule s.minus) + show "scale (a - b) x = scale a x - scale b x" by (rule s.diff) +qed + +lemma scale_zero_right [simp]: "scale a 0 = 0" + and scale_minus_right [simp]: "scale a (- x) = - (scale a x)" + and scale_right_diff_distrib: "scale a (x - y) = scale a x - scale a y" +proof - + interpret s: additive ["\x. scale a x"] + proof qed (rule scale_right_distrib) + show "scale a 0 = 0" by (rule s.zero) + show "scale a (- x) = - (scale a x)" by (rule s.minus) + show "scale a (x - y) = scale a x - scale a y" by (rule s.diff) +qed + +lemma scale_eq_0_iff [simp]: + "scale a x = 0 \ a = 0 \ x = 0" +proof cases + assume "a = 0" thus ?thesis by simp +next + assume anz [simp]: "a \ 0" + { assume "scale a x = 0" + hence "scale (inverse a) (scale a x) = 0" by simp + hence "x = 0" by simp } + thus ?thesis by force +qed + +lemma scale_left_imp_eq: + "\a \ 0; scale a x = scale a y\ \ x = y" +proof - + assume nonzero: "a \ 0" + assume "scale a x = scale a y" + hence "scale a (x - y) = 0" + by (simp add: scale_right_diff_distrib) + hence "x - y = 0" by (simp add: nonzero) + thus "x = y" by (simp only: right_minus_eq) +qed + +lemma scale_right_imp_eq: + "\x \ 0; scale a x = scale b x\ \ a = b" +proof - + assume nonzero: "x \ 0" + assume "scale a x = scale b x" + hence "scale (a - b) x = 0" + by (simp add: scale_left_diff_distrib) + hence "a - b = 0" by (simp add: nonzero) + thus "a = b" by (simp only: right_minus_eq) +qed + +lemma scale_cancel_left: + "scale a x = scale a y \ x = y \ a = 0" +by (auto intro: scale_left_imp_eq) + +lemma scale_cancel_right: + "scale a x = scale b x \ a = b \ x = 0" +by (auto intro: scale_right_imp_eq) + +end + +subsection {* Real vector spaces *} + +class scaleR = type + + fixes scaleR :: "real \ 'a \ 'a" (infixr "*\<^sub>R" 75) +begin + +abbreviation + divideR :: "'a \ real \ 'a" (infixl "'/\<^sub>R" 70) +where + "x /\<^sub>R r == scaleR (inverse r) x" + +end + +instantiation real :: scaleR +begin + +definition + real_scaleR_def [simp]: "scaleR a x = a * x" + +instance .. + +end + +class real_vector = scaleR + ab_group_add + + assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y" + and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x" + and scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x" + and scaleR_one [simp]: "scaleR 1 x = x" + +interpretation real_vector: + vector_space ["scaleR :: real \ 'a \ 'a::real_vector"] +apply unfold_locales +apply (rule scaleR_right_distrib) +apply (rule scaleR_left_distrib) +apply (rule scaleR_scaleR) +apply (rule scaleR_one) +done + +text {* Recover original theorem names *} + +lemmas scaleR_left_commute = real_vector.scale_left_commute +lemmas scaleR_zero_left = real_vector.scale_zero_left +lemmas scaleR_minus_left = real_vector.scale_minus_left +lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib +lemmas scaleR_zero_right = real_vector.scale_zero_right +lemmas scaleR_minus_right = real_vector.scale_minus_right +lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib +lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff +lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq +lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq +lemmas scaleR_cancel_left = real_vector.scale_cancel_left +lemmas scaleR_cancel_right = real_vector.scale_cancel_right + +class real_algebra = real_vector + ring + + assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" + and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" + +class real_algebra_1 = real_algebra + ring_1 + +class real_div_algebra = real_algebra_1 + division_ring + +class real_field = real_div_algebra + field + +instance real :: real_field +apply (intro_classes, unfold real_scaleR_def) +apply (rule right_distrib) +apply (rule left_distrib) +apply (rule mult_assoc [symmetric]) +apply (rule mult_1_left) +apply (rule mult_assoc) +apply (rule mult_left_commute) +done + +interpretation scaleR_left: additive ["(\a. scaleR a x::'a::real_vector)"] +proof qed (rule scaleR_left_distrib) + +interpretation scaleR_right: additive ["(\x. scaleR a x::'a::real_vector)"] +proof qed (rule scaleR_right_distrib) + +lemma nonzero_inverse_scaleR_distrib: + fixes x :: "'a::real_div_algebra" shows + "\a \ 0; x \ 0\ \ inverse (scaleR a x) = scaleR (inverse a) (inverse x)" +by (rule inverse_unique, simp) + +lemma inverse_scaleR_distrib: + fixes x :: "'a::{real_div_algebra,division_by_zero}" + shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" +apply (case_tac "a = 0", simp) +apply (case_tac "x = 0", simp) +apply (erule (1) nonzero_inverse_scaleR_distrib) +done + + +subsection {* Embedding of the Reals into any @{text real_algebra_1}: +@{term of_real} *} + +definition + of_real :: "real \ 'a::real_algebra_1" where + "of_real r = scaleR r 1" + +lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" +by (simp add: of_real_def) + +lemma of_real_0 [simp]: "of_real 0 = 0" +by (simp add: of_real_def) + +lemma of_real_1 [simp]: "of_real 1 = 1" +by (simp add: of_real_def) + +lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" +by (simp add: of_real_def scaleR_left_distrib) + +lemma of_real_minus [simp]: "of_real (- x) = - of_real x" +by (simp add: of_real_def) + +lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" +by (simp add: of_real_def scaleR_left_diff_distrib) + +lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" +by (simp add: of_real_def mult_commute) + +lemma nonzero_of_real_inverse: + "x \ 0 \ of_real (inverse x) = + inverse (of_real x :: 'a::real_div_algebra)" +by (simp add: of_real_def nonzero_inverse_scaleR_distrib) + +lemma of_real_inverse [simp]: + "of_real (inverse x) = + inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})" +by (simp add: of_real_def inverse_scaleR_distrib) + +lemma nonzero_of_real_divide: + "y \ 0 \ of_real (x / y) = + (of_real x / of_real y :: 'a::real_field)" +by (simp add: divide_inverse nonzero_of_real_inverse) + +lemma of_real_divide [simp]: + "of_real (x / y) = + (of_real x / of_real y :: 'a::{real_field,division_by_zero})" +by (simp add: divide_inverse) + +lemma of_real_power [simp]: + "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n" +by (induct n) (simp_all add: power_Suc) + +lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" +by (simp add: of_real_def scaleR_cancel_right) + +lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] + +lemma of_real_eq_id [simp]: "of_real = (id :: real \ real)" +proof + fix r + show "of_real r = id r" + by (simp add: of_real_def) +qed + +text{*Collapse nested embeddings*} +lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" +by (induct n) auto + +lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" +by (cases z rule: int_diff_cases, simp) + +lemma of_real_number_of_eq: + "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})" +by (simp add: number_of_eq) + +text{*Every real algebra has characteristic zero*} +instance real_algebra_1 < ring_char_0 +proof + fix m n :: nat + have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)" + by (simp only: of_real_eq_iff of_nat_eq_iff) + thus "(of_nat m = (of_nat n::'a)) = (m = n)" + by (simp only: of_real_of_nat_eq) +qed + +instance real_field < field_char_0 .. + + +subsection {* The Set of Real Numbers *} + +definition + Reals :: "'a::real_algebra_1 set" where + [code del]: "Reals \ range of_real" + +notation (xsymbols) + Reals ("\") + +lemma Reals_of_real [simp]: "of_real r \ Reals" +by (simp add: Reals_def) + +lemma Reals_of_int [simp]: "of_int z \ Reals" +by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) + +lemma Reals_of_nat [simp]: "of_nat n \ Reals" +by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) + +lemma Reals_number_of [simp]: + "(number_of w::'a::{number_ring,real_algebra_1}) \ Reals" +by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) + +lemma Reals_0 [simp]: "0 \ Reals" +apply (unfold Reals_def) +apply (rule range_eqI) +apply (rule of_real_0 [symmetric]) +done + +lemma Reals_1 [simp]: "1 \ Reals" +apply (unfold Reals_def) +apply (rule range_eqI) +apply (rule of_real_1 [symmetric]) +done + +lemma Reals_add [simp]: "\a \ Reals; b \ Reals\ \ a + b \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_add [symmetric]) +done + +lemma Reals_minus [simp]: "a \ Reals \ - a \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_minus [symmetric]) +done + +lemma Reals_diff [simp]: "\a \ Reals; b \ Reals\ \ a - b \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_diff [symmetric]) +done + +lemma Reals_mult [simp]: "\a \ Reals; b \ Reals\ \ a * b \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_mult [symmetric]) +done + +lemma nonzero_Reals_inverse: + fixes a :: "'a::real_div_algebra" + shows "\a \ Reals; a \ 0\ \ inverse a \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (erule nonzero_of_real_inverse [symmetric]) +done + +lemma Reals_inverse [simp]: + fixes a :: "'a::{real_div_algebra,division_by_zero}" + shows "a \ Reals \ inverse a \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_inverse [symmetric]) +done + +lemma nonzero_Reals_divide: + fixes a b :: "'a::real_field" + shows "\a \ Reals; b \ Reals; b \ 0\ \ a / b \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (erule nonzero_of_real_divide [symmetric]) +done + +lemma Reals_divide [simp]: + fixes a b :: "'a::{real_field,division_by_zero}" + shows "\a \ Reals; b \ Reals\ \ a / b \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_divide [symmetric]) +done + +lemma Reals_power [simp]: + fixes a :: "'a::{real_algebra_1,recpower}" + shows "a \ Reals \ a ^ n \ Reals" +apply (auto simp add: Reals_def) +apply (rule range_eqI) +apply (rule of_real_power [symmetric]) +done + +lemma Reals_cases [cases set: Reals]: + assumes "q \ \" + obtains (of_real) r where "q = of_real r" + unfolding Reals_def +proof - + from `q \ \` have "q \ range of_real" unfolding Reals_def . + then obtain r where "q = of_real r" .. + then show thesis .. +qed + +lemma Reals_induct [case_names of_real, induct set: Reals]: + "q \ \ \ (\r. P (of_real r)) \ P q" + by (rule Reals_cases) auto + + +subsection {* Real normed vector spaces *} + +class norm = type + + fixes norm :: "'a \ real" + +instantiation real :: norm +begin + +definition + real_norm_def [simp]: "norm r \ \r\" + +instance .. + +end + +class sgn_div_norm = scaleR + norm + sgn + + assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" + +class real_normed_vector = real_vector + sgn_div_norm + + assumes norm_ge_zero [simp]: "0 \ norm x" + and norm_eq_zero [simp]: "norm x = 0 \ x = 0" + and norm_triangle_ineq: "norm (x + y) \ norm x + norm y" + and norm_scaleR: "norm (scaleR a x) = \a\ * norm x" + +class real_normed_algebra = real_algebra + real_normed_vector + + assumes norm_mult_ineq: "norm (x * y) \ norm x * norm y" + +class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + + assumes norm_one [simp]: "norm 1 = 1" + +class real_normed_div_algebra = real_div_algebra + real_normed_vector + + assumes norm_mult: "norm (x * y) = norm x * norm y" + +class real_normed_field = real_field + real_normed_div_algebra + +instance real_normed_div_algebra < real_normed_algebra_1 +proof + fix x y :: 'a + show "norm (x * y) \ norm x * norm y" + by (simp add: norm_mult) +next + have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" + by (rule norm_mult) + thus "norm (1::'a) = 1" by simp +qed + +instance real :: real_normed_field +apply (intro_classes, unfold real_norm_def real_scaleR_def) +apply (simp add: real_sgn_def) +apply (rule abs_ge_zero) +apply (rule abs_eq_0) +apply (rule abs_triangle_ineq) +apply (rule abs_mult) +apply (rule abs_mult) +done + +lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" +by simp + +lemma zero_less_norm_iff [simp]: + fixes x :: "'a::real_normed_vector" + shows "(0 < norm x) = (x \ 0)" +by (simp add: order_less_le) + +lemma norm_not_less_zero [simp]: + fixes x :: "'a::real_normed_vector" + shows "\ norm x < 0" +by (simp add: linorder_not_less) + +lemma norm_le_zero_iff [simp]: + fixes x :: "'a::real_normed_vector" + shows "(norm x \ 0) = (x = 0)" +by (simp add: order_le_less) + +lemma norm_minus_cancel [simp]: + fixes x :: "'a::real_normed_vector" + shows "norm (- x) = norm x" +proof - + have "norm (- x) = norm (scaleR (- 1) x)" + by (simp only: scaleR_minus_left scaleR_one) + also have "\ = \- 1\ * norm x" + by (rule norm_scaleR) + finally show ?thesis by simp +qed + +lemma norm_minus_commute: + fixes a b :: "'a::real_normed_vector" + shows "norm (a - b) = norm (b - a)" +proof - + have "norm (- (b - a)) = norm (b - a)" + by (rule norm_minus_cancel) + thus ?thesis by simp +qed + +lemma norm_triangle_ineq2: + fixes a b :: "'a::real_normed_vector" + shows "norm a - norm b \ norm (a - b)" +proof - + have "norm (a - b + b) \ norm (a - b) + norm b" + by (rule norm_triangle_ineq) + thus ?thesis by simp +qed + +lemma norm_triangle_ineq3: + fixes a b :: "'a::real_normed_vector" + shows "\norm a - norm b\ \ norm (a - b)" +apply (subst abs_le_iff) +apply auto +apply (rule norm_triangle_ineq2) +apply (subst norm_minus_commute) +apply (rule norm_triangle_ineq2) +done + +lemma norm_triangle_ineq4: + fixes a b :: "'a::real_normed_vector" + shows "norm (a - b) \ norm a + norm b" +proof - + have "norm (a + - b) \ norm a + norm (- b)" + by (rule norm_triangle_ineq) + thus ?thesis + by (simp only: diff_minus norm_minus_cancel) +qed + +lemma norm_diff_ineq: + fixes a b :: "'a::real_normed_vector" + shows "norm a - norm b \ norm (a + b)" +proof - + have "norm a - norm (- b) \ norm (a - - b)" + by (rule norm_triangle_ineq2) + thus ?thesis by simp +qed + +lemma norm_diff_triangle_ineq: + fixes a b c d :: "'a::real_normed_vector" + shows "norm ((a + b) - (c + d)) \ norm (a - c) + norm (b - d)" +proof - + have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" + by (simp add: diff_minus add_ac) + also have "\ \ norm (a - c) + norm (b - d)" + by (rule norm_triangle_ineq) + finally show ?thesis . +qed + +lemma abs_norm_cancel [simp]: + fixes a :: "'a::real_normed_vector" + shows "\norm a\ = norm a" +by (rule abs_of_nonneg [OF norm_ge_zero]) + +lemma norm_add_less: + fixes x y :: "'a::real_normed_vector" + shows "\norm x < r; norm y < s\ \ norm (x + y) < r + s" +by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) + +lemma norm_mult_less: + fixes x y :: "'a::real_normed_algebra" + shows "\norm x < r; norm y < s\ \ norm (x * y) < r * s" +apply (rule order_le_less_trans [OF norm_mult_ineq]) +apply (simp add: mult_strict_mono') +done + +lemma norm_of_real [simp]: + "norm (of_real r :: 'a::real_normed_algebra_1) = \r\" +unfolding of_real_def by (simp add: norm_scaleR) + +lemma norm_number_of [simp]: + "norm (number_of w::'a::{number_ring,real_normed_algebra_1}) + = \number_of w\" +by (subst of_real_number_of_eq [symmetric], rule norm_of_real) + +lemma norm_of_int [simp]: + "norm (of_int z::'a::real_normed_algebra_1) = \of_int z\" +by (subst of_real_of_int_eq [symmetric], rule norm_of_real) + +lemma norm_of_nat [simp]: + "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" +apply (subst of_real_of_nat_eq [symmetric]) +apply (subst norm_of_real, simp) +done + +lemma nonzero_norm_inverse: + fixes a :: "'a::real_normed_div_algebra" + shows "a \ 0 \ norm (inverse a) = inverse (norm a)" +apply (rule inverse_unique [symmetric]) +apply (simp add: norm_mult [symmetric]) +done + +lemma norm_inverse: + fixes a :: "'a::{real_normed_div_algebra,division_by_zero}" + shows "norm (inverse a) = inverse (norm a)" +apply (case_tac "a = 0", simp) +apply (erule nonzero_norm_inverse) +done + +lemma nonzero_norm_divide: + fixes a b :: "'a::real_normed_field" + shows "b \ 0 \ norm (a / b) = norm a / norm b" +by (simp add: divide_inverse norm_mult nonzero_norm_inverse) + +lemma norm_divide: + fixes a b :: "'a::{real_normed_field,division_by_zero}" + shows "norm (a / b) = norm a / norm b" +by (simp add: divide_inverse norm_mult norm_inverse) + +lemma norm_power_ineq: + fixes x :: "'a::{real_normed_algebra_1,recpower}" + shows "norm (x ^ n) \ norm x ^ n" +proof (induct n) + case 0 show "norm (x ^ 0) \ norm x ^ 0" by simp +next + case (Suc n) + have "norm (x * x ^ n) \ norm x * norm (x ^ n)" + by (rule norm_mult_ineq) + also from Suc have "\ \ norm x * norm x ^ n" + using norm_ge_zero by (rule mult_left_mono) + finally show "norm (x ^ Suc n) \ norm x ^ Suc n" + by (simp add: power_Suc) +qed + +lemma norm_power: + fixes x :: "'a::{real_normed_div_algebra,recpower}" + shows "norm (x ^ n) = norm x ^ n" +by (induct n) (simp_all add: power_Suc norm_mult) + + +subsection {* Sign function *} + +lemma norm_sgn: + "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" +by (simp add: sgn_div_norm norm_scaleR) + +lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" +by (simp add: sgn_div_norm) + +lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" +by (simp add: sgn_div_norm) + +lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" +by (simp add: sgn_div_norm) + +lemma sgn_scaleR: + "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" +by (simp add: sgn_div_norm norm_scaleR mult_ac) + +lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" +by (simp add: sgn_div_norm) + +lemma sgn_of_real: + "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" +unfolding of_real_def by (simp only: sgn_scaleR sgn_one) + +lemma sgn_mult: + fixes x y :: "'a::real_normed_div_algebra" + shows "sgn (x * y) = sgn x * sgn y" +by (simp add: sgn_div_norm norm_mult mult_commute) + +lemma real_sgn_eq: "sgn (x::real) = x / \x\" +by (simp add: sgn_div_norm divide_inverse) + +lemma real_sgn_pos: "0 < (x::real) \ sgn x = 1" +unfolding real_sgn_eq by simp + +lemma real_sgn_neg: "(x::real) < 0 \ sgn x = -1" +unfolding real_sgn_eq by simp + + +subsection {* Bounded Linear and Bilinear Operators *} + +locale bounded_linear = additive + + constrains f :: "'a::real_normed_vector \ 'b::real_normed_vector" + assumes scaleR: "f (scaleR r x) = scaleR r (f x)" + assumes bounded: "\K. \x. norm (f x) \ norm x * K" +begin + +lemma pos_bounded: + "\K>0. \x. norm (f x) \ norm x * K" +proof - + obtain K where K: "\x. norm (f x) \ norm x * K" + using bounded by fast + show ?thesis + proof (intro exI impI conjI allI) + show "0 < max 1 K" + by (rule order_less_le_trans [OF zero_less_one le_maxI1]) + next + fix x + have "norm (f x) \ norm x * K" using K . + also have "\ \ norm x * max 1 K" + by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) + finally show "norm (f x) \ norm x * max 1 K" . + qed +qed + +lemma nonneg_bounded: + "\K\0. \x. norm (f x) \ norm x * K" +proof - + from pos_bounded + show ?thesis by (auto intro: order_less_imp_le) +qed + +end + +locale bounded_bilinear = + fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] + \ 'c::real_normed_vector" + (infixl "**" 70) + assumes add_left: "prod (a + a') b = prod a b + prod a' b" + assumes add_right: "prod a (b + b') = prod a b + prod a b'" + assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" + assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" + assumes bounded: "\K. \a b. norm (prod a b) \ norm a * norm b * K" +begin + +lemma pos_bounded: + "\K>0. \a b. norm (a ** b) \ norm a * norm b * K" +apply (cut_tac bounded, erule exE) +apply (rule_tac x="max 1 K" in exI, safe) +apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) +apply (drule spec, drule spec, erule order_trans) +apply (rule mult_left_mono [OF le_maxI2]) +apply (intro mult_nonneg_nonneg norm_ge_zero) +done + +lemma nonneg_bounded: + "\K\0. \a b. norm (a ** b) \ norm a * norm b * K" +proof - + from pos_bounded + show ?thesis by (auto intro: order_less_imp_le) +qed + +lemma additive_right: "additive (\b. prod a b)" +by (rule additive.intro, rule add_right) + +lemma additive_left: "additive (\a. prod a b)" +by (rule additive.intro, rule add_left) + +lemma zero_left: "prod 0 b = 0" +by (rule additive.zero [OF additive_left]) + +lemma zero_right: "prod a 0 = 0" +by (rule additive.zero [OF additive_right]) + +lemma minus_left: "prod (- a) b = - prod a b" +by (rule additive.minus [OF additive_left]) + +lemma minus_right: "prod a (- b) = - prod a b" +by (rule additive.minus [OF additive_right]) + +lemma diff_left: + "prod (a - a') b = prod a b - prod a' b" +by (rule additive.diff [OF additive_left]) + +lemma diff_right: + "prod a (b - b') = prod a b - prod a b'" +by (rule additive.diff [OF additive_right]) + +lemma bounded_linear_left: + "bounded_linear (\a. a ** b)" +apply (unfold_locales) +apply (rule add_left) +apply (rule scaleR_left) +apply (cut_tac bounded, safe) +apply (rule_tac x="norm b * K" in exI) +apply (simp add: mult_ac) +done + +lemma bounded_linear_right: + "bounded_linear (\b. a ** b)" +apply (unfold_locales) +apply (rule add_right) +apply (rule scaleR_right) +apply (cut_tac bounded, safe) +apply (rule_tac x="norm a * K" in exI) +apply (simp add: mult_ac) +done + +lemma prod_diff_prod: + "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" +by (simp add: diff_left diff_right) + +end + +interpretation mult: + bounded_bilinear ["op * :: 'a \ 'a \ 'a::real_normed_algebra"] +apply (rule bounded_bilinear.intro) +apply (rule left_distrib) +apply (rule right_distrib) +apply (rule mult_scaleR_left) +apply (rule mult_scaleR_right) +apply (rule_tac x="1" in exI) +apply (simp add: norm_mult_ineq) +done + +interpretation mult_left: + bounded_linear ["(\x::'a::real_normed_algebra. x * y)"] +by (rule mult.bounded_linear_left) + +interpretation mult_right: + bounded_linear ["(\y::'a::real_normed_algebra. x * y)"] +by (rule mult.bounded_linear_right) + +interpretation divide: + bounded_linear ["(\x::'a::real_normed_field. x / y)"] +unfolding divide_inverse by (rule mult.bounded_linear_left) + +interpretation scaleR: bounded_bilinear ["scaleR"] +apply (rule bounded_bilinear.intro) +apply (rule scaleR_left_distrib) +apply (rule scaleR_right_distrib) +apply simp +apply (rule scaleR_left_commute) +apply (rule_tac x="1" in exI) +apply (simp add: norm_scaleR) +done + +interpretation scaleR_left: bounded_linear ["\r. scaleR r x"] +by (rule scaleR.bounded_linear_left) + +interpretation scaleR_right: bounded_linear ["\x. scaleR r x"] +by (rule scaleR.bounded_linear_right) + +interpretation of_real: bounded_linear ["\r. of_real r"] +unfolding of_real_def by (rule scaleR.bounded_linear_left) + +end