diff -r 94648e0e4506 -r 6d97dbb189a9 src/ZF/OrderType.ML --- a/src/ZF/OrderType.ML Sat May 11 20:40:31 2002 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,967 +0,0 @@ -(* Title: ZF/OrderType.ML - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1994 University of Cambridge - -Order types and ordinal arithmetic in Zermelo-Fraenkel Set Theory - -Ordinal arithmetic is traditionally defined in terms of order types, as here. -But a definition by transfinite recursion would be much simpler! -*) - - -(*??for Ordinal.ML*) -(*suitable for rewriting PROVIDED i has been fixed*) -Goal "[| j:i; Ord(i) |] ==> Ord(j)"; -by (blast_tac (claset() addIs [Ord_in_Ord]) 1); -qed "Ord_in_Ord'"; - - -(**** Proofs needing the combination of Ordinal.thy and Order.thy ****) - -val [prem] = goal (the_context ()) "j le i ==> well_ord(j, Memrel(i))"; -by (rtac well_ordI 1); -by (rtac (wf_Memrel RS wf_imp_wf_on) 1); -by (resolve_tac [prem RS ltE] 1); -by (asm_simp_tac (simpset() addsimps [linear_def, - [ltI, prem] MRS lt_trans2 RS ltD]) 1); -by (REPEAT (resolve_tac [ballI, Ord_linear] 1)); -by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1)); -qed "le_well_ord_Memrel"; - -(*"Ord(i) ==> well_ord(i, Memrel(i))"*) -bind_thm ("well_ord_Memrel", le_refl RS le_well_ord_Memrel); - -(*Kunen's Theorem 7.3 (i), page 16; see also Ordinal/Ord_in_Ord - The smaller ordinal is an initial segment of the larger *) -Goalw [pred_def, lt_def] - "j pred(i, j, Memrel(i)) = j"; -by (Asm_simp_tac 1); -by (blast_tac (claset() addIs [Ord_trans]) 1); -qed "lt_pred_Memrel"; - -Goalw [pred_def,Memrel_def] - "x:A ==> pred(A, x, Memrel(A)) = A Int x"; -by (Blast_tac 1); -qed "pred_Memrel"; - -Goal "[| j R"; -by (ftac lt_pred_Memrel 1); -by (etac ltE 1); -by (rtac (well_ord_Memrel RS well_ord_iso_predE) 1 THEN - assume_tac 3 THEN assume_tac 1); -by (rewtac ord_iso_def); -(*Combining the two simplifications causes looping*) -by (Asm_simp_tac 1); -by (blast_tac (claset() addIs [bij_is_fun RS apply_type, Ord_trans]) 1); -qed "Ord_iso_implies_eq_lemma"; - -(*Kunen's Theorem 7.3 (ii), page 16. Isomorphic ordinals are equal*) -Goal "[| Ord(i); Ord(j); f: ord_iso(i,Memrel(i),j,Memrel(j)) |] \ -\ ==> i=j"; -by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1); -by (REPEAT (eresolve_tac [asm_rl, ord_iso_sym, Ord_iso_implies_eq_lemma] 1)); -qed "Ord_iso_implies_eq"; - - -(**** Ordermap and ordertype ****) - -Goalw [ordermap_def,ordertype_def] - "ordermap(A,r) : A -> ordertype(A,r)"; -by (rtac lam_type 1); -by (rtac (lamI RS imageI) 1); -by (REPEAT (assume_tac 1)); -qed "ordermap_type"; - -(*** Unfolding of ordermap ***) - -(*Useful for cardinality reasoning; see CardinalArith.ML*) -Goalw [ordermap_def, pred_def] - "[| wf[A](r); x:A |] ==> \ -\ ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)"; -by (Asm_simp_tac 1); -by (etac (wfrec_on RS trans) 1); -by (assume_tac 1); -by (asm_simp_tac (simpset() addsimps [subset_iff, image_lam, - vimage_singleton_iff]) 1); -qed "ordermap_eq_image"; - -(*Useful for rewriting PROVIDED pred is not unfolded until later!*) -Goal "[| wf[A](r); x:A |] ==> \ -\ ordermap(A,r) ` x = {ordermap(A,r)`y . y : pred(A,x,r)}"; -by (asm_simp_tac (simpset() addsimps [ordermap_eq_image, pred_subset, - ordermap_type RS image_fun]) 1); -qed "ordermap_pred_unfold"; - -(*pred-unfolded version. NOT suitable for rewriting -- loops!*) -bind_thm ("ordermap_unfold", rewrite_rule [pred_def] ordermap_pred_unfold); - -(*The theorem above is - -[| wf[A](r); x : A |] -==> ordermap(A,r) ` x = {ordermap(A,r) ` y . y: {y: A . : r}} - -NOTE: the definition of ordermap used here delivers ordinals only if r is -transitive. If r is the predecessor relation on the naturals then -ordermap(nat,predr) ` n equals {n-1} and not n. A more complicated definition, -like - - ordermap(A,r) ` x = Union{succ(ordermap(A,r) ` y) . y: {y: A . : r}}, - -might eliminate the need for r to be transitive. -*) - - -(*** Showing that ordermap, ordertype yield ordinals ***) - -fun ordermap_elim_tac i = - EVERY [etac (ordermap_unfold RS equalityD1 RS subsetD RS RepFunE) i, - assume_tac (i+1), - assume_tac i]; - -Goalw [well_ord_def, tot_ord_def, part_ord_def] - "[| well_ord(A,r); x:A |] ==> Ord(ordermap(A,r) ` x)"; -by Safe_tac; -by (wf_on_ind_tac "x" [] 1); -by (asm_simp_tac (simpset() addsimps [ordermap_pred_unfold]) 1); -by (rtac (Ord_is_Transset RSN (2,OrdI)) 1); -by (rewrite_goals_tac [pred_def,Transset_def]); -by (Blast_tac 2); -by Safe_tac; -by (ordermap_elim_tac 1); -by (fast_tac (claset() addSEs [trans_onD]) 1); -qed "Ord_ordermap"; - -Goalw [ordertype_def] - "well_ord(A,r) ==> Ord(ordertype(A,r))"; -by (stac ([ordermap_type, subset_refl] MRS image_fun) 1); -by (rtac (Ord_is_Transset RSN (2,OrdI)) 1); -by (blast_tac (claset() addIs [Ord_ordermap]) 2); -by (rewrite_goals_tac [Transset_def,well_ord_def]); -by Safe_tac; -by (ordermap_elim_tac 1); -by (Blast_tac 1); -qed "Ord_ordertype"; - -(*** ordermap preserves the orderings in both directions ***) - -Goal "[| : r; wf[A](r); w: A; x: A |] ==> \ -\ ordermap(A,r)`w : ordermap(A,r)`x"; -by (eres_inst_tac [("x1", "x")] (ordermap_unfold RS ssubst) 1); -by (assume_tac 1); -by (Blast_tac 1); -qed "ordermap_mono"; - -(*linearity of r is crucial here*) -Goalw [well_ord_def, tot_ord_def] - "[| ordermap(A,r)`w : ordermap(A,r)`x; well_ord(A,r); \ -\ w: A; x: A |] ==> : r"; -by Safe_tac; -by (linear_case_tac 1); -by (blast_tac (claset() addSEs [mem_not_refl RS notE]) 1); -by (dtac ordermap_mono 1); -by (REPEAT_SOME assume_tac); -by (etac mem_asym 1); -by (assume_tac 1); -qed "converse_ordermap_mono"; - -bind_thm ("ordermap_surj", - rewrite_rule [symmetric ordertype_def] - (ordermap_type RS surj_image)); - -Goalw [well_ord_def, tot_ord_def, bij_def, inj_def] - "well_ord(A,r) ==> ordermap(A,r) : bij(A, ordertype(A,r))"; -by (force_tac (claset() addSIs [ordermap_type, ordermap_surj] - addEs [linearE] - addDs [ordermap_mono], - simpset() addsimps [mem_not_refl]) 1); -qed "ordermap_bij"; - -(*** Isomorphisms involving ordertype ***) - -Goalw [ord_iso_def] - "well_ord(A,r) ==> \ -\ ordermap(A,r) : ord_iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))"; -by (safe_tac (claset() addSEs [well_ord_is_wf] - addSIs [ordermap_type RS apply_type, - ordermap_mono, ordermap_bij])); -by (blast_tac (claset() addSDs [converse_ordermap_mono]) 1); -qed "ordertype_ord_iso"; - -Goal "[| f: ord_iso(A,r,B,s); well_ord(B,s) |] ==> \ -\ ordertype(A,r) = ordertype(B,s)"; -by (ftac well_ord_ord_iso 1 THEN assume_tac 1); -by (rtac Ord_iso_implies_eq 1 - THEN REPEAT (etac Ord_ordertype 1)); -by (deepen_tac (claset() addIs [ord_iso_trans, ord_iso_sym] - addSEs [ordertype_ord_iso]) 0 1); -qed "ordertype_eq"; - -Goal "[| ordertype(A,r) = ordertype(B,s); \ -\ well_ord(A,r); well_ord(B,s) \ -\ |] ==> EX f. f: ord_iso(A,r,B,s)"; -by (rtac exI 1); -by (resolve_tac [ordertype_ord_iso RS ord_iso_trans] 1); -by (assume_tac 1); -by (etac ssubst 1); -by (eresolve_tac [ordertype_ord_iso RS ord_iso_sym] 1); -qed "ordertype_eq_imp_ord_iso"; - -(*** Basic equalities for ordertype ***) - -(*Ordertype of Memrel*) -Goal "j le i ==> ordertype(j,Memrel(i)) = j"; -by (resolve_tac [Ord_iso_implies_eq RS sym] 1); -by (etac ltE 1); -by (REPEAT (ares_tac [le_well_ord_Memrel, Ord_ordertype] 1)); -by (rtac ord_iso_trans 1); -by (eresolve_tac [le_well_ord_Memrel RS ordertype_ord_iso] 2); -by (resolve_tac [id_bij RS ord_isoI] 1); -by (Asm_simp_tac 1); -by (fast_tac (claset() addEs [ltE, Ord_in_Ord, Ord_trans]) 1); -qed "le_ordertype_Memrel"; - -(*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*) -bind_thm ("ordertype_Memrel", le_refl RS le_ordertype_Memrel); - -Goal "ordertype(0,r) = 0"; -by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq RS trans] 1); -by (etac emptyE 1); -by (rtac well_ord_0 1); -by (resolve_tac [Ord_0 RS ordertype_Memrel] 1); -qed "ordertype_0"; - -Addsimps [ordertype_0]; - -(*Ordertype of rvimage: [| f: bij(A,B); well_ord(B,s) |] ==> - ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *) -bind_thm ("bij_ordertype_vimage", ord_iso_rvimage RS ordertype_eq); - -(*** A fundamental unfolding law for ordertype. ***) - -(*Ordermap returns the same result if applied to an initial segment*) -Goal "[| well_ord(A,r); y:A; z: pred(A,y,r) |] ==> \ -\ ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z"; -by (forward_tac [[well_ord_is_wf, pred_subset] MRS wf_on_subset_A] 1); -by (wf_on_ind_tac "z" [] 1); -by (safe_tac (claset() addSEs [predE])); -by (asm_simp_tac - (simpset() addsimps [ordermap_pred_unfold, well_ord_is_wf, pred_iff]) 1); -(*combining these two simplifications LOOPS! *) -by (asm_simp_tac (simpset() addsimps [pred_pred_eq]) 1); -by (asm_full_simp_tac (simpset() addsimps [pred_def]) 1); -by (rtac (refl RSN (2,RepFun_cong)) 1); -by (dtac well_ord_is_trans_on 1); -by (fast_tac (claset() addSEs [trans_onD]) 1); -qed "ordermap_pred_eq_ordermap"; - -Goalw [ordertype_def] - "ordertype(A,r) = {ordermap(A,r)`y . y : A}"; -by (rtac ([ordermap_type, subset_refl] MRS image_fun) 1); -qed "ordertype_unfold"; - -(** Theorems by Krzysztof Grabczewski; proofs simplified by lcp **) - -Goal "[| well_ord(A,r); x:A |] ==> \ -\ ordertype(pred(A,x,r),r) <= ordertype(A,r)"; -by (asm_simp_tac (simpset() addsimps [ordertype_unfold, - pred_subset RSN (2, well_ord_subset)]) 1); -by (fast_tac (claset() addIs [ordermap_pred_eq_ordermap] - addEs [predE]) 1); -qed "ordertype_pred_subset"; - -Goal "[| well_ord(A,r); x:A |] ==> \ -\ ordertype(pred(A,x,r),r) < ordertype(A,r)"; -by (resolve_tac [ordertype_pred_subset RS subset_imp_le RS leE] 1); -by (REPEAT (ares_tac [Ord_ordertype, well_ord_subset, pred_subset] 1)); -by (eresolve_tac [sym RS ordertype_eq_imp_ord_iso RS exE] 1); -by (etac well_ord_iso_predE 3); -by (REPEAT (ares_tac [pred_subset, well_ord_subset] 1)); -qed "ordertype_pred_lt"; - -(*May rewrite with this -- provided no rules are supplied for proving that - well_ord(pred(A,x,r), r) *) -Goal "well_ord(A,r) ==> \ -\ ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}"; -by (rtac equalityI 1); -by (safe_tac (claset() addSIs [ordertype_pred_lt RS ltD])); -by (auto_tac (claset(), - simpset() addsimps [ordertype_def, - well_ord_is_wf RS ordermap_eq_image, - ordermap_type RS image_fun, - ordermap_pred_eq_ordermap, - pred_subset])); -qed "ordertype_pred_unfold"; - - -(**** Alternative definition of ordinal ****) - -(*proof by Krzysztof Grabczewski*) -Goalw [Ord_alt_def] "Ord(i) ==> Ord_alt(i)"; -by (rtac conjI 1); -by (etac well_ord_Memrel 1); -by (rewrite_goals_tac [Ord_def, Transset_def, pred_def, Memrel_def]); -by (Blast.depth_tac (claset()) 8 1); -qed "Ord_is_Ord_alt"; - -(*proof by lcp*) -Goalw [Ord_alt_def, Ord_def, Transset_def, well_ord_def, - tot_ord_def, part_ord_def, trans_on_def] - "Ord_alt(i) ==> Ord(i)"; -by (asm_full_simp_tac (simpset() addsimps [pred_Memrel]) 1); -by (blast_tac (claset() addSEs [equalityE]) 1); -qed "Ord_alt_is_Ord"; - - -(**** Ordinal Addition ****) - -(*** Order Type calculations for radd ***) - -(** Addition with 0 **) - -Goal "(lam z:A+0. case(%x. x, %y. y, z)) : bij(A+0, A)"; -by (res_inst_tac [("d", "Inl")] lam_bijective 1); -by Safe_tac; -by (ALLGOALS Asm_simp_tac); -qed "bij_sum_0"; - -Goal "well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)"; -by (resolve_tac [bij_sum_0 RS ord_isoI RS ordertype_eq] 1); -by (assume_tac 2); -by (Force_tac 1); -qed "ordertype_sum_0_eq"; - -Goal "(lam z:0+A. case(%x. x, %y. y, z)) : bij(0+A, A)"; -by (res_inst_tac [("d", "Inr")] lam_bijective 1); -by Safe_tac; -by (ALLGOALS Asm_simp_tac); -qed "bij_0_sum"; - -Goal "well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)"; -by (resolve_tac [bij_0_sum RS ord_isoI RS ordertype_eq] 1); -by (assume_tac 2); -by (Force_tac 1); -qed "ordertype_0_sum_eq"; - -(** Initial segments of radd. Statements by Grabczewski **) - -(*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *) -Goalw [pred_def] - "a:A ==> \ -\ (lam x:pred(A,a,r). Inl(x)) \ -\ : bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))"; -by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1); -by Auto_tac; -qed "pred_Inl_bij"; - -Goal "[| a:A; well_ord(A,r) |] ==> \ -\ ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) = \ -\ ordertype(pred(A,a,r), r)"; -by (resolve_tac [pred_Inl_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); -by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_subset])); -by (asm_full_simp_tac (simpset() addsimps [pred_def]) 1); -qed "ordertype_pred_Inl_eq"; - -Goalw [pred_def, id_def] - "b:B ==> \ -\ id(A+pred(B,b,s)) \ -\ : bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))"; -by (res_inst_tac [("d", "%z. z")] lam_bijective 1); -by Safe_tac; -by (ALLGOALS (Asm_full_simp_tac)); -qed "pred_Inr_bij"; - -Goal "[| b:B; well_ord(A,r); well_ord(B,s) |] ==> \ -\ ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) = \ -\ ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))"; -by (resolve_tac [pred_Inr_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); -by (force_tac (claset(), simpset() addsimps [pred_def, id_def]) 2); -by (REPEAT_FIRST (ares_tac [well_ord_radd, pred_subset, well_ord_subset])); -qed "ordertype_pred_Inr_eq"; - - -(*** ordify: trivial coercion to an ordinal ***) - -Goal "Ord(ordify(x))"; -by (asm_full_simp_tac (simpset() addsimps [ordify_def]) 1); -qed "Ord_ordify"; -AddIffs [Ord_ordify]; -AddTCs [Ord_ordify]; - -(*Collapsing*) -Goal "ordify(ordify(x)) = ordify(x)"; -by (asm_full_simp_tac (simpset() addsimps [ordify_def]) 1); -qed "ordify_idem"; -Addsimps [ordify_idem]; - - -(*** Basic laws for ordinal addition ***) - -Goal "[|Ord(i); Ord(j)|] ==> Ord(raw_oadd(i,j))"; -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def, ordify_def, Ord_ordertype, well_ord_radd, well_ord_Memrel]) 1); -qed "Ord_raw_oadd"; - -Goal "Ord(i++j)"; -by (asm_full_simp_tac (simpset() addsimps [oadd_def, Ord_raw_oadd]) 1); -qed "Ord_oadd"; -AddIffs [Ord_oadd]; AddTCs [Ord_oadd]; - - -(** Ordinal addition with zero **) - -Goal "Ord(i) ==> raw_oadd(i,0) = i"; -by (asm_simp_tac (simpset() addsimps [raw_oadd_def, ordify_def, Memrel_0, ordertype_sum_0_eq, - ordertype_Memrel, well_ord_Memrel]) 1); -qed "raw_oadd_0"; - -Goal "Ord(i) ==> i++0 = i"; -by (asm_simp_tac (simpset() addsimps [oadd_def, raw_oadd_0, ordify_def]) 1); -qed "oadd_0"; -Addsimps [oadd_0]; - -Goal "Ord(i) ==> raw_oadd(0,i) = i"; -by (asm_simp_tac (simpset() addsimps [raw_oadd_def, ordify_def, Memrel_0, ordertype_0_sum_eq, - ordertype_Memrel, well_ord_Memrel]) 1); -qed "raw_oadd_0_left"; - -Goal "Ord(i) ==> 0++i = i"; -by (asm_simp_tac (simpset() addsimps [oadd_def, raw_oadd_0_left, ordify_def]) 1); -qed "oadd_0_left"; -Addsimps [oadd_0_left]; - - -Goal "i++j = (if Ord(i) then (if Ord(j) then raw_oadd(i,j) else i) \ -\ else (if Ord(j) then j else 0))"; -by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, raw_oadd_0_left, raw_oadd_0]) 1); -qed "oadd_eq_if_raw_oadd"; - - -Goal "[|Ord(i); Ord(j)|] ==> raw_oadd(i,j) = i++j"; -by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def]) 1); -qed "raw_oadd_eq_oadd"; - -(*** Further properties of ordinal addition. Statements by Grabczewski, - proofs by lcp. ***) - -(*Surely also provable by transfinite induction on j?*) -Goal "k k < i++j"; -by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, lt_Ord2, raw_oadd_0]) 1); -by (Clarify_tac 1); -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def]) 1); -by (rtac ltE 1 THEN assume_tac 1); -by (rtac ltI 1); -by (REPEAT (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel] 2)); -by (force_tac - (claset(), - simpset() addsimps [ordertype_pred_unfold, - well_ord_radd, well_ord_Memrel, - ordertype_pred_Inl_eq, - lt_pred_Memrel, leI RS le_ordertype_Memrel]) 1); -qed "lt_oadd1"; - -(*Thus also we obtain the rule i++j = k ==> i le k *) -Goal "Ord(i) ==> i le i++j"; -by (rtac all_lt_imp_le 1); -by (REPEAT (ares_tac [Ord_oadd, lt_oadd1] 1)); -qed "oadd_le_self"; - -(** A couple of strange but necessary results! **) - -Goal "A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))"; -by (resolve_tac [id_bij RS ord_isoI] 1); -by (Asm_simp_tac 1); -by (Blast_tac 1); -qed "id_ord_iso_Memrel"; - -Goal "[| well_ord(A,r); k \ -\ ordertype(A+k, radd(A, r, k, Memrel(j))) = \ -\ ordertype(A+k, radd(A, r, k, Memrel(k)))"; -by (etac ltE 1); -by (resolve_tac [ord_iso_refl RS sum_ord_iso_cong RS ordertype_eq] 1); -by (eresolve_tac [OrdmemD RS id_ord_iso_Memrel RS ord_iso_sym] 1); -by (REPEAT_FIRST (ares_tac [well_ord_radd, well_ord_Memrel])); -qed "ordertype_sum_Memrel"; - -Goal "k i++k < i++j"; -by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, raw_oadd_0_left, lt_Ord, lt_Ord2]) 1); -by (Clarify_tac 1); -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def]) 1); -by (rtac ltE 1 THEN assume_tac 1); -by (resolve_tac [ordertype_pred_unfold RS equalityD2 RS subsetD RS ltI] 1); -by (REPEAT_FIRST (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel])); -by (rtac RepFun_eqI 1); -by (etac InrI 2); -by (asm_simp_tac - (simpset() addsimps [ordertype_pred_Inr_eq, well_ord_Memrel, - lt_pred_Memrel, leI RS le_ordertype_Memrel, - ordertype_sum_Memrel]) 1); -qed "oadd_lt_mono2"; - -Goal "[| i++j < i++k; Ord(j) |] ==> j i++j < i++k <-> j j=k"; -by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd] addsplits [split_if_asm]) 1); -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]) 1); -by (rtac Ord_linear_lt 1); -by (REPEAT_SOME assume_tac); -by (ALLGOALS - (force_tac (claset() addDs [inst "i" "i" oadd_lt_mono2], - simpset() addsimps [lt_not_refl]))); -qed "oadd_inject"; - -Goal "k < i++j ==> k i++j = i Un (UN k:j. {i++k})"; -by (rtac (subsetI RS equalityI) 1); -by (eresolve_tac [ltI RS lt_oadd_disj RS disjE] 1); -by (REPEAT (ares_tac [Ord_oadd] 1)); -by (force_tac (claset() addIs [lt_oadd1, oadd_lt_mono2], - simpset() addsimps [Ord_mem_iff_lt]) 3); -by (Blast_tac 2); -by (blast_tac (claset() addSEs [ltE]) 1); -qed "oadd_unfold"; - -Goal "Ord(i) ==> i++1 = succ(i)"; -by (asm_simp_tac (simpset() addsimps [oadd_unfold, Ord_1, oadd_0]) 1); -by (Blast_tac 1); -qed "oadd_1"; - -Goal "Ord(j) ==> i++succ(j) = succ(i++j)"; -by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd]) 1); -by (Clarify_tac 1); -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]) 1); -by (asm_simp_tac (simpset() - addsimps [inst "i" "j" oadd_1 RS sym, inst "i" "i++j" oadd_1 RS sym, oadd_assoc]) 1); -qed "oadd_succ"; -Addsimps [oadd_succ]; - - -(** Ordinal addition with limit ordinals **) - -val prems = -Goal "[| !!x. x:A ==> Ord(j(x)); a:A |] ==> \ -\ i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))"; -by (blast_tac (claset() addIs prems @ [ltI, Ord_UN, Ord_oadd, - lt_oadd1 RS ltD, oadd_lt_mono2 RS ltD] - addSEs [ltE] addSDs [ltI RS lt_oadd_disj]) 1); -qed "oadd_UN"; - -Goal "Limit(j) ==> i++j = (UN k:j. i++k)"; -by (forward_tac [Limit_has_0 RS ltD] 1); -by (asm_simp_tac (simpset() addsimps [Limit_is_Ord RS Ord_in_Ord, - oadd_UN RS sym, Union_eq_UN RS sym, - Limit_Union_eq]) 1); -qed "oadd_Limit"; - -(** Order/monotonicity properties of ordinal addition **) - -Goal "Ord(i) ==> i le j++i"; -by (eres_inst_tac [("i","i")] trans_induct3 1); -by (asm_simp_tac (simpset() addsimps [Ord_0_le]) 1); -by (asm_simp_tac (simpset() addsimps [oadd_succ, succ_leI]) 1); -by (asm_simp_tac (simpset() addsimps [oadd_Limit]) 1); -by (rtac le_trans 1); -by (rtac le_implies_UN_le_UN 2); -by (etac bspec 2); -by (assume_tac 2); -by (asm_simp_tac (simpset() addsimps [Union_eq_UN RS sym, Limit_Union_eq, - le_refl, Limit_is_Ord]) 1); -qed "oadd_le_self2"; - -Goal "k le j ==> k++i le j++i"; -by (ftac lt_Ord 1); -by (ftac le_Ord2 1); -by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd]) 1); -by (Clarify_tac 1); -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]) 1); -by (eres_inst_tac [("i","i")] trans_induct3 1); -by (Asm_simp_tac 1); -by (asm_simp_tac (simpset() addsimps [oadd_succ, succ_le_iff]) 1); -by (asm_simp_tac (simpset() addsimps [oadd_Limit]) 1); -by (rtac le_implies_UN_le_UN 1); -by (Blast_tac 1); -qed "oadd_le_mono1"; - -Goal "[| i' le i; j' i'++j' < i++j"; -by (rtac lt_trans1 1); -by (REPEAT (eresolve_tac [asm_rl, oadd_le_mono1, oadd_lt_mono2, ltE, - Ord_succD] 1)); -qed "oadd_lt_mono"; - -Goal "[| i' le i; j' le j |] ==> i'++j' le i++j"; -by (asm_simp_tac (simpset() delsimps [oadd_succ] - addsimps [oadd_succ RS sym, le_Ord2, oadd_lt_mono]) 1); -qed "oadd_le_mono"; - -Goal "[| Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k"; -by (asm_simp_tac (simpset() delsimps [oadd_succ] - addsimps [oadd_lt_iff2, oadd_succ RS sym, Ord_succ]) 1); -qed "oadd_le_iff2"; - - -(** Ordinal subtraction; the difference is ordertype(j-i, Memrel(j)). - Probably simpler to define the difference recursively! -**) - -Goal "A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))"; -by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1); -by (blast_tac (claset() addSIs [if_type]) 1); -by (fast_tac (claset() addSIs [case_type]) 1); -by (etac sumE 2); -by (ALLGOALS Asm_simp_tac); -qed "bij_sum_Diff"; - -Goal "i le j ==> \ -\ ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) = \ -\ ordertype(j, Memrel(j))"; -by (safe_tac (claset() addSDs [le_subset_iff RS iffD1])); -by (resolve_tac [bij_sum_Diff RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); -by (etac well_ord_Memrel 3); -by (assume_tac 1); -by (Asm_simp_tac 1); -by (forw_inst_tac [("j", "y")] Ord_in_Ord 1 THEN assume_tac 1); -by (forw_inst_tac [("j", "x")] Ord_in_Ord 1 THEN assume_tac 1); -by (asm_simp_tac (simpset() addsimps [Ord_mem_iff_lt, lt_Ord, not_lt_iff_le]) 1); -by (blast_tac (claset() addIs [lt_trans2, lt_trans]) 1); -qed "ordertype_sum_Diff"; - -Goalw [odiff_def] - "[| Ord(i); Ord(j) |] ==> Ord(i--j)"; -by (REPEAT (ares_tac [Ord_ordertype, well_ord_Memrel RS well_ord_subset, - Diff_subset] 1)); -qed "Ord_odiff"; -Addsimps [Ord_odiff]; AddTCs [Ord_odiff]; - - -Goal - "i le j \ -\ ==> raw_oadd(i,j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))"; -by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def, odiff_def]) 1); -by (safe_tac (claset() addSDs [le_subset_iff RS iffD1])); -by (resolve_tac [sum_ord_iso_cong RS ordertype_eq] 1); -by (etac id_ord_iso_Memrel 1); -by (resolve_tac [ordertype_ord_iso RS ord_iso_sym] 1); -by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel RS well_ord_subset, - Diff_subset] 1)); -qed "raw_oadd_ordertype_Diff"; - -Goal "i le j ==> i ++ (j--i) = j"; -by (asm_simp_tac (simpset() addsimps [lt_Ord, le_Ord2, oadd_def, ordify_def, raw_oadd_ordertype_Diff, ordertype_sum_Diff, - ordertype_Memrel, lt_Ord2 RS Ord_succD]) 1); -qed "oadd_odiff_inverse"; - -(*By oadd_inject, the difference between i and j is unique. Note that we get - i++j = k ==> j = k--i. *) -Goal "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j"; -by (rtac oadd_inject 1); -by (REPEAT (ares_tac [Ord_ordertype, Ord_oadd, Ord_odiff] 2)); -by (blast_tac (claset() addIs [oadd_odiff_inverse, oadd_le_self]) 1); -qed "odiff_oadd_inverse"; - -Goal "[| i i--k < j--k"; -by (res_inst_tac [("i","k")] oadd_lt_cancel2 1); -by (asm_full_simp_tac (simpset() addsimps [oadd_odiff_inverse]) 1); -by (stac oadd_odiff_inverse 1); -by (blast_tac (claset() addIs [le_trans, leI]) 1); -by (assume_tac 1); -by (asm_simp_tac (simpset() addsimps [lt_Ord, le_Ord2]) 1); -qed "odiff_lt_mono2"; - - -(**** Ordinal Multiplication ****) - -Goalw [omult_def] - "[| Ord(i); Ord(j) |] ==> Ord(i**j)"; -by (REPEAT (ares_tac [Ord_ordertype, well_ord_rmult, well_ord_Memrel] 1)); -qed "Ord_omult"; -Addsimps [Ord_omult]; AddTCs [Ord_omult]; - -(*** A useful unfolding law ***) - -Goalw [pred_def] - "[| a:A; b:B |] ==> pred(A*B, , rmult(A,r,B,s)) = \ -\ pred(A,a,r)*B Un ({a} * pred(B,b,s))"; -by (Blast_tac 1); -qed "pred_Pair_eq"; - -Goal "[| a:A; b:B; well_ord(A,r); well_ord(B,s) |] ==> \ -\ ordertype(pred(A*B, , rmult(A,r,B,s)), rmult(A,r,B,s)) = \ -\ ordertype(pred(A,a,r)*B + pred(B,b,s), \ -\ radd(A*B, rmult(A,r,B,s), B, s))"; -by (asm_simp_tac (simpset() addsimps [pred_Pair_eq]) 1); -by (resolve_tac [ordertype_eq RS sym] 1); -by (rtac prod_sum_singleton_ord_iso 1); -by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_rmult RS well_ord_subset])); -by (blast_tac (claset() addSEs [predE]) 1); -qed "ordertype_pred_Pair_eq"; - -Goalw [raw_oadd_def, omult_def] - "[| i' \ -\ ordertype(pred(i*j, , rmult(i,Memrel(i),j,Memrel(j))), \ -\ rmult(i,Memrel(i),j,Memrel(j))) = \ -\ raw_oadd (j**i', j')"; -by (asm_simp_tac (simpset() addsimps [ordertype_pred_Pair_eq, lt_pred_Memrel, - ltD, lt_Ord2, well_ord_Memrel]) 1); -by (rtac trans 1); -by (resolve_tac [ordertype_ord_iso RS sum_ord_iso_cong RS ordertype_eq] 2); -by (rtac ord_iso_refl 3); -by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq] 1); -by (REPEAT_FIRST (eresolve_tac [SigmaE, sumE, ltE, ssubst])); -by (REPEAT_FIRST (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, - Ord_ordertype])); -by (ALLGOALS Asm_simp_tac); -by Safe_tac; -by (ALLGOALS (blast_tac (claset() addIs [Ord_trans]))); -qed "ordertype_pred_Pair_lemma"; - -Goalw [omult_def] - "[| Ord(i); Ord(j); k \ -\ EX j' i'. k = j**i' ++ j' & j' j**i' ++ j' < j**i"; -by (rtac ltI 1); -by (asm_simp_tac - (simpset() addsimps [Ord_ordertype, well_ord_rmult, well_ord_Memrel, - lt_Ord2]) 2); -by (asm_simp_tac - (simpset() addsimps [ordertype_pred_unfold, - well_ord_rmult, well_ord_Memrel, lt_Ord2]) 1); -by (rtac bexI 1); -by (blast_tac (claset() addSEs [ltE]) 2); -by (asm_simp_tac - (simpset() addsimps [ordertype_pred_Pair_lemma, ltI, - symmetric omult_def]) 1); -by (asm_simp_tac (simpset() addsimps [ - lt_Ord, lt_Ord2, raw_oadd_eq_oadd]) 1); -qed "omult_oadd_lt"; - -Goal "[| Ord(i); Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})"; -by (rtac (subsetI RS equalityI) 1); -by (resolve_tac [lt_omult RS exE] 1); -by (etac ltI 3); -by (REPEAT (ares_tac [Ord_omult] 1)); -by (blast_tac (claset() addSEs [ltE]) 1); -by (blast_tac (claset() addIs [omult_oadd_lt RS ltD, ltI]) 1); -qed "omult_unfold"; - -(*** Basic laws for ordinal multiplication ***) - -(** Ordinal multiplication by zero **) - -Goalw [omult_def] "i**0 = 0"; -by (Asm_simp_tac 1); -qed "omult_0"; - -Goalw [omult_def] "0**i = 0"; -by (Asm_simp_tac 1); -qed "omult_0_left"; - -Addsimps [omult_0, omult_0_left]; - -(** Ordinal multiplication by 1 **) - -Goalw [omult_def] "Ord(i) ==> i**1 = i"; -by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1); -by (res_inst_tac [("c", "snd"), ("d", "%z.<0,z>")] lam_bijective 1); -by (REPEAT_FIRST (eresolve_tac [snd_type, SigmaE, succE, emptyE, - well_ord_Memrel, ordertype_Memrel])); -by (ALLGOALS Asm_simp_tac); -qed "omult_1"; - -Goalw [omult_def] "Ord(i) ==> 1**i = i"; -by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1); -by (res_inst_tac [("c", "fst"), ("d", "%z.")] lam_bijective 1); -by (REPEAT_FIRST (eresolve_tac [fst_type, SigmaE, succE, emptyE, - well_ord_Memrel, ordertype_Memrel])); -by (ALLGOALS Asm_simp_tac); -qed "omult_1_left"; - -Addsimps [omult_1, omult_1_left]; - -(** Distributive law for ordinal multiplication and addition **) - -Goal "[| Ord(i); Ord(j); Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)"; -by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd]) 1); -by (asm_full_simp_tac (simpset() addsimps [omult_def, raw_oadd_def]) 1); -by (resolve_tac [ordertype_eq RS trans] 1); -by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS - prod_ord_iso_cong) 1); -by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, - Ord_ordertype] 1)); -by (rtac (sum_prod_distrib_ord_iso RS ordertype_eq RS trans) 1); -by (rtac ordertype_eq 2); -by (rtac ([ordertype_ord_iso, ordertype_ord_iso] MRS sum_ord_iso_cong) 2); -by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, - Ord_ordertype] 1)); -qed "oadd_omult_distrib"; - -Goal "[| Ord(i); Ord(j) |] ==> i**succ(j) = (i**j)++i"; -by (asm_simp_tac (simpset() - delsimps [oadd_succ] - addsimps [inst "i" "j" oadd_1 RS sym, oadd_omult_distrib]) 1); -qed "omult_succ"; - -(** Associative law **) - -Goalw [omult_def] - "[| Ord(i); Ord(j); Ord(k) |] ==> (i**j)**k = i**(j**k)"; -by (resolve_tac [ordertype_eq RS trans] 1); -by (rtac ([ord_iso_refl, ordertype_ord_iso RS ord_iso_sym] MRS - prod_ord_iso_cong) 1); -by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); -by (resolve_tac [prod_assoc_ord_iso RS ord_iso_sym RS - ordertype_eq RS trans] 1); -by (rtac ([ordertype_ord_iso, ord_iso_refl] MRS prod_ord_iso_cong RS - ordertype_eq) 2); -by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Ord_ordertype] 1)); -qed "omult_assoc"; - - -(** Ordinal multiplication with limit ordinals **) - -val prems = -Goal "[| Ord(i); !!x. x:A ==> Ord(j(x)) |] ==> \ -\ i ** (UN x:A. j(x)) = (UN x:A. i**j(x))"; -by (asm_simp_tac (simpset() addsimps prems @ [Ord_UN, omult_unfold]) 1); -by (Blast_tac 1); -qed "omult_UN"; - -Goal "[| Ord(i); Limit(j) |] ==> i**j = (UN k:j. i**k)"; -by (asm_simp_tac - (simpset() addsimps [Limit_is_Ord RS Ord_in_Ord, omult_UN RS sym, - Union_eq_UN RS sym, Limit_Union_eq]) 1); -qed "omult_Limit"; - - -(*** Ordering/monotonicity properties of ordinal multiplication ***) - -(*As a special case we have "[| 0 0 < i**j" *) -Goal "[| k k < i**j"; -by (safe_tac (claset() addSEs [ltE] addSIs [ltI, Ord_omult])); -by (asm_simp_tac (simpset() addsimps [omult_unfold]) 1); -by (REPEAT_FIRST (ares_tac [bexI])); -by (Asm_simp_tac 1); -qed "lt_omult1"; - -Goal "[| Ord(i); 0 i le i**j"; -by (rtac all_lt_imp_le 1); -by (REPEAT (ares_tac [Ord_omult, lt_omult1, lt_Ord2] 1)); -qed "omult_le_self"; - -Goal "[| k le j; Ord(i) |] ==> k**i le j**i"; -by (ftac lt_Ord 1); -by (ftac le_Ord2 1); -by (etac trans_induct3 1); -by (asm_simp_tac (simpset() addsimps [le_refl, Ord_0]) 1); -by (asm_simp_tac (simpset() addsimps [omult_succ, oadd_le_mono]) 1); -by (asm_simp_tac (simpset() addsimps [omult_Limit]) 1); -by (rtac le_implies_UN_le_UN 1); -by (Blast_tac 1); -qed "omult_le_mono1"; - -Goal "[| k i**k < i**j"; -by (rtac ltI 1); -by (asm_simp_tac (simpset() addsimps [omult_unfold, lt_Ord2]) 1); -by (safe_tac (claset() addSEs [ltE] addSIs [Ord_omult])); -by (REPEAT_FIRST (ares_tac [bexI])); -by (asm_simp_tac (simpset() addsimps [Ord_omult]) 1); -qed "omult_lt_mono2"; - -Goal "[| k le j; Ord(i) |] ==> i**k le i**j"; -by (rtac subset_imp_le 1); -by (safe_tac (claset() addSEs [ltE, make_elim Ord_succD] addSIs [Ord_omult])); -by (asm_full_simp_tac (simpset() addsimps [omult_unfold]) 1); -by (deepen_tac (claset() addEs [Ord_trans]) 0 1); -qed "omult_le_mono2"; - -Goal "[| i' le i; j' le j |] ==> i'**j' le i**j"; -by (rtac le_trans 1); -by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_le_mono2, ltE, - Ord_succD] 1)); -qed "omult_le_mono"; - -Goal "[| i' le i; j' i'**j' < i**j"; -by (rtac lt_trans1 1); -by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_lt_mono2, ltE, - Ord_succD] 1)); -qed "omult_lt_mono"; - -Goal "[| Ord(i); 0 i le j**i"; -by (ftac lt_Ord2 1); -by (eres_inst_tac [("i","i")] trans_induct3 1); -by (Asm_simp_tac 1); -by (asm_simp_tac (simpset() addsimps [omult_succ]) 1); -by (etac lt_trans1 1); -by (res_inst_tac [("b", "j**x")] (oadd_0 RS subst) 1 THEN - rtac oadd_lt_mono2 2); -by (REPEAT (ares_tac [Ord_omult] 1)); -by (asm_simp_tac (simpset() addsimps [omult_Limit]) 1); -by (rtac le_trans 1); -by (rtac le_implies_UN_le_UN 2); -by (Blast_tac 2); -by (asm_simp_tac (simpset() addsimps [Union_eq_UN RS sym, Limit_Union_eq, - Limit_is_Ord]) 1); -qed "omult_le_self2"; - - -(** Further properties of ordinal multiplication **) - -Goal "[| i**j = i**k; 0 j=k"; -by (rtac Ord_linear_lt 1); -by (REPEAT_SOME assume_tac); -by (ALLGOALS - (force_tac (claset() addDs [omult_lt_mono2], - simpset() addsimps [lt_not_refl]))); -qed "omult_inject"; -