diff -r 5a3fa0c4b215 -r 6ddcc24038e1 doc-src/Tutorial/fp.tex --- a/doc-src/Tutorial/fp.tex Wed Oct 13 15:18:15 1999 +0200 +++ b/doc-src/Tutorial/fp.tex Wed Oct 13 15:41:24 1999 +0200 @@ -1356,7 +1356,7 @@ theorems simultaneously: \begin{quote}\small \verbatiminput{Datatype/abgoalind.ML} -\end{quote}\indexbold{*mutual_induct_tac} +\end{quote} The resulting 8 goals (one for each constructor) are proved in one fell swoop \texttt{by Auto_tac;}. @@ -1365,7 +1365,7 @@ \[ P@1(x@1)\ \texttt{\&}\ \dots\ \texttt{\&}\ P@n(x@n) \] where each variable $x@i$ is of type $\tau@i$. Induction is started by \begin{ttbox} -by(mutual_induct_tac ["\(x@1\)",\(\dots\),"\(x@n\)"] \(k\)); +by(induct_tac "\(x@1\) \(\dots\) \(x@n\)" \(k\)); \end{ttbox} \begin{exercise}