diff -r 53cbea20e4d9 -r 6df83a636e67 src/HOL/Hyperreal/Ln.thy --- a/src/HOL/Hyperreal/Ln.thy Sun Sep 24 04:16:28 2006 +0200 +++ b/src/HOL/Hyperreal/Ln.thy Sun Sep 24 05:49:50 2006 +0200 @@ -109,14 +109,14 @@ qed qed -lemma aux2: "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums x^2" +lemma aux2: "(%n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2" proof - - have "(%n. (1 / 2)^n) sums (1 / (1 - (1/2)))" + have "(%n. (1 / 2::real)^n) sums (1 / (1 - (1/2)))" apply (rule geometric_sums) by (simp add: abs_interval_iff) also have "(1::real) / (1 - 1/2) = 2" by simp - finally have "(%n. (1 / 2)^n) sums 2" . + finally have "(%n. (1 / 2::real)^n) sums 2" . then have "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums (x^2 / 2 * 2)" by (rule sums_mult) also have "x^2 / 2 * 2 = x^2"