diff -r 1fead823c7c6 -r 6e15de7dd871 doc-src/TutorialI/document/Itrev.tex --- a/doc-src/TutorialI/document/Itrev.tex Tue Aug 28 13:15:15 2012 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,222 +0,0 @@ -% -\begin{isabellebody}% -\def\isabellecontext{Itrev}% -% -\isadelimtheory -% -\endisadelimtheory -% -\isatagtheory -% -\endisatagtheory -{\isafoldtheory}% -% -\isadelimtheory -% -\endisadelimtheory -% -\isamarkupsection{Induction Heuristics% -} -\isamarkuptrue% -% -\begin{isamarkuptext}% -\label{sec:InductionHeuristics} -\index{induction heuristics|(}% -The purpose of this section is to illustrate some simple heuristics for -inductive proofs. The first one we have already mentioned in our initial -example: -\begin{quote} -\emph{Theorems about recursive functions are proved by induction.} -\end{quote} -In case the function has more than one argument -\begin{quote} -\emph{Do induction on argument number $i$ if the function is defined by -recursion in argument number $i$.} -\end{quote} -When we look at the proof of \isa{{\isaliteral{28}{\isacharparenleft}}xs{\isaliteral{40}{\isacharat}}ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{40}{\isacharat}}\ zs\ {\isaliteral{3D}{\isacharequal}}\ xs\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{28}{\isacharparenleft}}ys{\isaliteral{40}{\isacharat}}zs{\isaliteral{29}{\isacharparenright}}} -in \S\ref{sec:intro-proof} we find -\begin{itemize} -\item \isa{{\isaliteral{40}{\isacharat}}} is recursive in -the first argument -\item \isa{xs} occurs only as the first argument of -\isa{{\isaliteral{40}{\isacharat}}} -\item both \isa{ys} and \isa{zs} occur at least once as -the second argument of \isa{{\isaliteral{40}{\isacharat}}} -\end{itemize} -Hence it is natural to perform induction on~\isa{xs}. - -The key heuristic, and the main point of this section, is to -\emph{generalize the goal before induction}. -The reason is simple: if the goal is -too specific, the induction hypothesis is too weak to allow the induction -step to go through. Let us illustrate the idea with an example. - -Function \cdx{rev} has quadratic worst-case running time -because it calls function \isa{{\isaliteral{40}{\isacharat}}} for each element of the list and -\isa{{\isaliteral{40}{\isacharat}}} is linear in its first argument. A linear time version of -\isa{rev} reqires an extra argument where the result is accumulated -gradually, using only~\isa{{\isaliteral{23}{\isacharhash}}}:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{primrec}\isamarkupfalse% -\ itrev\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}itrev\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ \ \ \ \ ys\ {\isaliteral{3D}{\isacharequal}}\ ys{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}itrev\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{23}{\isacharhash}}xs{\isaliteral{29}{\isacharparenright}}\ ys\ {\isaliteral{3D}{\isacharequal}}\ itrev\ xs\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{23}{\isacharhash}}ys{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% -\begin{isamarkuptext}% -\noindent -The behaviour of \cdx{itrev} is simple: it reverses -its first argument by stacking its elements onto the second argument, -and returning that second argument when the first one becomes -empty. Note that \isa{itrev} is tail-recursive: it can be -compiled into a loop. - -Naturally, we would like to show that \isa{itrev} does indeed reverse -its first argument provided the second one is empty:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}itrev\ xs\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ rev\ xs{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\begin{isamarkuptxt}% -\noindent -There is no choice as to the induction variable, and we immediately simplify:% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{2C}{\isacharcomma}}\ simp{\isaliteral{5F}{\isacharunderscore}}all{\isaliteral{29}{\isacharparenright}}% -\begin{isamarkuptxt}% -\noindent -Unfortunately, this attempt does not prove -the induction step: -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ list{\isaliteral{2E}{\isachardot}}\isanewline -\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }itrev\ list\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ rev\ list\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ itrev\ list\ {\isaliteral{5B}{\isacharbrackleft}}a{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{3D}{\isacharequal}}\ rev\ list\ {\isaliteral{40}{\isacharat}}\ {\isaliteral{5B}{\isacharbrackleft}}a{\isaliteral{5D}{\isacharbrackright}}% -\end{isabelle} -The induction hypothesis is too weak. The fixed -argument,~\isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}, prevents it from rewriting the conclusion. -This example suggests a heuristic: -\begin{quote}\index{generalizing induction formulae}% -\emph{Generalize goals for induction by replacing constants by variables.} -\end{quote} -Of course one cannot do this na\"{\i}vely: \isa{itrev\ xs\ ys\ {\isaliteral{3D}{\isacharequal}}\ rev\ xs} is -just not true. The correct generalization is% -\end{isamarkuptxt}% -\isamarkuptrue% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}itrev\ xs\ ys\ {\isaliteral{3D}{\isacharequal}}\ rev\ xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\begin{isamarkuptxt}% -\noindent -If \isa{ys} is replaced by \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}}, the right-hand side simplifies to -\isa{rev\ xs}, as required. - -In this instance it was easy to guess the right generalization. -Other situations can require a good deal of creativity. - -Although we now have two variables, only \isa{xs} is suitable for -induction, and we repeat our proof attempt. Unfortunately, we are still -not there: -\begin{isabelle}% -\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ list{\isaliteral{2E}{\isachardot}}\isanewline -\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }itrev\ list\ ys\ {\isaliteral{3D}{\isacharequal}}\ rev\ list\ {\isaliteral{40}{\isacharat}}\ ys\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline -\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }itrev\ list\ {\isaliteral{28}{\isacharparenleft}}a\ {\isaliteral{23}{\isacharhash}}\ ys{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ rev\ list\ {\isaliteral{40}{\isacharat}}\ a\ {\isaliteral{23}{\isacharhash}}\ ys% -\end{isabelle} -The induction hypothesis is still too weak, but this time it takes no -intuition to generalize: the problem is that \isa{ys} is fixed throughout -the subgoal, but the induction hypothesis needs to be applied with -\isa{a\ {\isaliteral{23}{\isacharhash}}\ ys} instead of \isa{ys}. Hence we prove the theorem -for all \isa{ys} instead of a fixed one:% -\end{isamarkuptxt}% -\isamarkuptrue% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}ys{\isaliteral{2E}{\isachardot}}\ itrev\ xs\ ys\ {\isaliteral{3D}{\isacharequal}}\ rev\ xs\ {\isaliteral{40}{\isacharat}}\ ys{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -This time induction on \isa{xs} followed by simplification succeeds. This -leads to another heuristic for generalization: -\begin{quote} -\emph{Generalize goals for induction by universally quantifying all free -variables {\em(except the induction variable itself!)}.} -\end{quote} -This prevents trivial failures like the one above and does not affect the -validity of the goal. However, this heuristic should not be applied blindly. -It is not always required, and the additional quantifiers can complicate -matters in some cases. The variables that should be quantified are typically -those that change in recursive calls. - -A final point worth mentioning is the orientation of the equation we just -proved: the more complex notion (\isa{itrev}) is on the left-hand -side, the simpler one (\isa{rev}) on the right-hand side. This constitutes -another, albeit weak heuristic that is not restricted to induction: -\begin{quote} - \emph{The right-hand side of an equation should (in some sense) be simpler - than the left-hand side.} -\end{quote} -This heuristic is tricky to apply because it is not obvious that -\isa{rev\ xs\ {\isaliteral{40}{\isacharat}}\ ys} is simpler than \isa{itrev\ xs\ ys}. But see what -happens if you try to prove \isa{rev\ xs\ {\isaliteral{40}{\isacharat}}\ ys\ {\isaliteral{3D}{\isacharequal}}\ itrev\ xs\ ys}! - -If you have tried these heuristics and still find your -induction does not go through, and no obvious lemma suggests itself, you may -need to generalize your proposition even further. This requires insight into -the problem at hand and is beyond simple rules of thumb. -Additionally, you can read \S\ref{sec:advanced-ind} -to learn about some advanced techniques for inductive proofs.% -\index{induction heuristics|)}% -\end{isamarkuptext}% -\isamarkuptrue% -% -\isadelimtheory -% -\endisadelimtheory -% -\isatagtheory -% -\endisatagtheory -{\isafoldtheory}% -% -\isadelimtheory -% -\endisadelimtheory -\end{isabellebody}% -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "root" -%%% End: