diff -r e5b84854baa4 -r 6e6eeef63589 src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy --- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Mon Jun 26 14:26:03 2017 +0100 +++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Mon Jun 26 16:59:44 2017 +0100 @@ -1673,7 +1673,7 @@ assume "(x, k) \ p'" then have "\i l. x \ i \ i \ d \ (x, l) \ p \ k = i \ l" unfolding p'_def by auto - then guess i l by (elim exE) note il=conjunctD4[OF this] + then obtain i l where il: "x \ i" "i \ d" "(x, l) \ p" "k = i \ l" by blast show "x \ k" and "k \ cbox a b" using p'(2-3)[OF il(3)] il by auto show "\a b. k = cbox a b" @@ -1687,12 +1687,12 @@ assume "(x1, k1) \ p'" then have "\i l. x1 \ i \ i \ d \ (x1, l) \ p \ k1 = i \ l" unfolding p'_def by auto - then guess i1 l1 by (elim exE) note il1=conjunctD4[OF this] + then obtain i1 l1 where il1: "x1 \ i1" "i1 \ d" "(x1, l1) \ p" "k1 = i1 \ l1" by blast fix x2 k2 assume "(x2,k2)\p'" then have "\i l. x2 \ i \ i \ d \ (x2, l) \ p \ k2 = i \ l" unfolding p'_def by auto - then guess i2 l2 by (elim exE) note il2=conjunctD4[OF this] + then obtain i2 l2 where il2: "x2 \ i2" "i2 \ d" "(x2, l2) \ p" "k2 = i2 \ l2" by blast assume "(x1, k1) \ (x2, k2)" then have "interior i1 \ interior i2 = {} \ interior l1 \ interior l2 = {}" using d'(5)[OF il1(2) il2(2)] p'(5)[OF il1(3) il2(3)] @@ -1768,7 +1768,7 @@ assume "(x, k) \ p'" then have "\i l. x \ i \ i \ d \ (x, l) \ p \ k = i \ l" unfolding p'_def by auto - then guess i l by (elim exE) note il=conjunctD4[OF this] + then obtain i l where il: "x \ i" "i \ d" "(x, l) \ p" "k = i \ l" by blast then show "\y i l. (x, k) = (y, i \ l) \ (y, l) \ p \ i \ d \ i \ l \ {}" apply (rule_tac x=x in exI) apply (rule_tac x=i in exI)