diff -r 58d24cbe5fa6 -r 70f0214b3ecc src/HOL/Word/Examples/WordExamples.thy --- a/src/HOL/Word/Examples/WordExamples.thy Tue Aug 28 19:45:45 2007 +0200 +++ b/src/HOL/Word/Examples/WordExamples.thy Tue Aug 28 20:13:47 2007 +0200 @@ -21,12 +21,12 @@ -- "number ring simps" lemma - "27 + 11 = (38::'a::finite word)" + "27 + 11 = (38::'a::len word)" "27 + 11 = (6::5 word)" - "7 * 3 = (21::'a::finite word)" - "11 - 27 = (-16::'a::finite word)" - "- -11 = (11::'a::finite word)" - "-40 + 1 = (-39::'a::finite word)" + "7 * 3 = (21::'a::len word)" + "11 - 27 = (-16::'a::len word)" + "- -11 = (11::'a::len word)" + "-40 + 1 = (-39::'a::len word)" by simp_all lemma "word_pred 2 = 1" by simp @@ -56,12 +56,12 @@ lemma "scast (0b1010 :: 4 word) = (0b111010 :: 6 word)" by simp -- "reducing goals to nat or int and arith:" -lemma "i < x ==> i < (i + 1 :: 'a :: finite word)" by unat_arith -lemma "i < x ==> i < (i + 1 :: 'a :: finite word)" by uint_arith +lemma "i < x ==> i < (i + 1 :: 'a :: len word)" by unat_arith +lemma "i < x ==> i < (i + 1 :: 'a :: len word)" by uint_arith -- "bool lists" -lemma "of_bl [True, False, True, True] = (0b1011::'a::finite word)" by simp +lemma "of_bl [True, False, True, True] = (0b1011::'a::len word)" by simp lemma "to_bl (0b110::4 word) = [False, True, True, False]" by simp @@ -92,21 +92,21 @@ lemma "(0b11000 :: 10 word) !! n = (n = 4 \ n = 3)" by (auto simp add: bin_nth_Bit) -lemma "set_bit 55 7 True = (183::'a word)" by simp -lemma "set_bit 0b0010 7 True = (0b10000010::'a word)" by simp -lemma "set_bit 0b0010 1 False = (0::'a word)" by simp +lemma "set_bit 55 7 True = (183::'a::len0 word)" by simp +lemma "set_bit 0b0010 7 True = (0b10000010::'a::len0 word)" by simp +lemma "set_bit 0b0010 1 False = (0::'a::len0 word)" by simp -lemma "lsb (0b0101::'a::finite word)" by simp -lemma "\ lsb (0b1000::'a::finite word)" by simp +lemma "lsb (0b0101::'a::len word)" by simp +lemma "\ lsb (0b1000::'a::len word)" by simp lemma "\ msb (0b0101::4 word)" by simp lemma "msb (0b1000::4 word)" by simp -lemma "word_cat (27::4 word) (27::8 word) = (2843::'a::finite word)" by simp +lemma "word_cat (27::4 word) (27::8 word) = (2843::'a::len word)" by simp lemma "word_cat (0b0011::4 word) (0b1111::6word) = (0b0011001111 :: 10 word)" by simp -lemma "0b1011 << 2 = (0b101100::'a word)" by simp +lemma "0b1011 << 2 = (0b101100::'a::len0 word)" by simp lemma "0b1011 >> 2 = (0b10::8 word)" by simp lemma "0b1011 >>> 2 = (0b10::8 word)" by simp