diff -r 71e1aa0d9421 -r 71366be2c647 src/HOL/Fun.thy --- a/src/HOL/Fun.thy Wed Jul 05 16:50:07 2023 +0100 +++ b/src/HOL/Fun.thy Thu Jul 06 16:59:12 2023 +0100 @@ -218,6 +218,10 @@ lemma inj_onI [intro?]: "(\x y. x \ A \ y \ A \ f x = f y \ x = y) \ inj_on f A" by (simp add: inj_on_def) +text \For those frequent proofs by contradiction\ +lemma inj_onCI: "(\x y. x \ A \ y \ A \ f x = f y \ x \ y \ False) \ inj_on f A" + by (force simp: inj_on_def) + lemma inj_on_inverseI: "(\x. x \ A \ g (f x) = x) \ inj_on f A" by (auto dest: arg_cong [of concl: g] simp add: inj_on_def)