diff -r efdc6c533bd3 -r 7216a10d69ba src/HOL/Library/Stream.thy --- a/src/HOL/Library/Stream.thy Sun Oct 19 18:05:26 2014 +0200 +++ b/src/HOL/Library/Stream.thy Mon Oct 20 07:45:58 2014 +0200 @@ -491,9 +491,8 @@ lemma sinterleave_snth[simp]: "even n \ sinterleave s1 s2 !! n = s1 !! (n div 2)" - "odd n \ sinterleave s1 s2 !! n = s2 !! (n div 2)" - by (induct n arbitrary: s1 s2) - (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2]) + "odd n \ sinterleave s1 s2 !! n = s2 !! (n div 2)" + by (induct n arbitrary: s1 s2) simp_all lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \ sset s2" proof (intro equalityI subsetI)