diff -r fb78ee03c391 -r 731171c27be9 doc-src/TutorialI/IsarOverview/Isar/Induction.thy --- a/doc-src/TutorialI/IsarOverview/Isar/Induction.thy Sun Dec 29 08:56:24 2002 +0100 +++ b/doc-src/TutorialI/IsarOverview/Isar/Induction.thy Sun Dec 29 18:31:31 2002 +0100 @@ -47,7 +47,7 @@ The same game can be played with other datatypes, for example lists, where @{term tl} is the tail of a list, and @{text length} returns a -natual number: +natural number: \Tweakskip *} (*<*)declare length_tl[simp del](*>*) @@ -132,7 +132,7 @@ automatically: for example in case @{text"(Suc n)"}, @{text ?case} is only @{prop"Q' x"} whereas the assumptions (named @{term Suc}!) contain both the usual induction hypothesis \emph{and} @{prop"P' x"}. -It should be clear how this generalizes to more complex formulae. +It should be clear how this generalises to more complex formulae. As an example we will now prove complete induction via structural induction. *}