diff -r be5461582d0f -r 739a9379e29b src/HOL/Probability/Borel.thy --- a/src/HOL/Probability/Borel.thy Sun May 09 17:47:43 2010 -0700 +++ b/src/HOL/Probability/Borel.thy Sun May 09 22:51:11 2010 -0700 @@ -68,9 +68,9 @@ with w have "real(Suc(natceiling(inverse(g w - f w)))) > inverse(g w - f w)" by (metis lessI order_le_less_trans real_natceiling_ge real_of_nat_less_iff) hence "inverse(real(Suc(natceiling(inverse(g w - f w))))) < inverse(inverse(g w - f w))" - by (metis less_iff_diff_less_0 less_imp_inverse_less linorder_neqE_linordered_idom nz positive_imp_inverse_positive real_le_antisym real_less_def w) + by (metis less_iff_diff_less_0 less_imp_inverse_less linorder_neqE_linordered_idom nz positive_imp_inverse_positive order_antisym less_le w) hence "inverse(real(Suc(natceiling(inverse(g w - f w))))) < g w - f w" - by (metis inverse_inverse_eq order_less_le_trans real_le_refl) + by (metis inverse_inverse_eq order_less_le_trans order_refl) thus "\n. f w \ g w - inverse(real(Suc n))" using w by (rule_tac x="natceiling(inverse(g w - f w))" in exI, auto) next @@ -357,7 +357,7 @@ borel_measurable_uminus_borel_measurable f g) finally have 2: "(\x. -((f x + -g x) ^ 2 * inverse 4)) \ borel_measurable M" . show ?thesis - apply (simp add: times_eq_sum_squares real_diff_def) + apply (simp add: times_eq_sum_squares diff_def) using 1 2 apply (simp add: borel_measurable_add_borel_measurable) done qed @@ -366,7 +366,7 @@ assumes f: "f \ borel_measurable M" assumes g: "g \ borel_measurable M" shows "(\x. f x - g x) \ borel_measurable M" -unfolding real_diff_def +unfolding diff_def by (fast intro: borel_measurable_add_borel_measurable borel_measurable_uminus_borel_measurable f g) @@ -397,7 +397,7 @@ { fix w from `0 < a` have "a \ inverse (f w) \ 0 < f w \ f w \ 1 / a" by (metis inverse_eq_divide inverse_inverse_eq le_imp_inverse_le - linorder_not_le real_le_refl real_le_trans real_less_def + linorder_not_le order_refl order_trans less_le xt1(7) zero_less_divide_1_iff) } hence "{w \ space M. a \ inverse (f w)} = {w \ space M. 0 < f w} \ {w \ space M. f w \ 1 / a}" by auto @@ -418,7 +418,7 @@ apply (metis inverse_eq_divide linorder_not_le xt1(8) xt1(9) zero_le_divide_1_iff) apply (metis inverse_eq_divide inverse_inverse_eq inverse_le_imp_le_neg - linorder_not_le real_le_refl real_le_trans) + linorder_not_le order_refl order_trans) done } hence "{w \ space M. a \ inverse (f w)} = {w \ space M. f w \ 1 / a} \ {w \ space M. 0 \ f w}" by auto @@ -627,11 +627,11 @@ proof - from assms have "y - z > 0" by simp hence A: "\n. (\ m \ n. \ x m + - y \ < y - z)" using assms - unfolding incseq_def LIMSEQ_def dist_real_def real_diff_def + unfolding incseq_def LIMSEQ_def dist_real_def diff_def by simp have "\m. x m \ y" using incseq_le assms by auto hence B: "\m. \ x m + - y \ = y - x m" - by (metis abs_if abs_minus_add_cancel less_iff_diff_less_0 linorder_not_le real_diff_def) + by (metis abs_if abs_minus_add_cancel less_iff_diff_less_0 linorder_not_le diff_def) from A B show ?thesis by auto qed